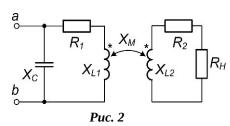

Шифр	
Задача №1	Баллы 16

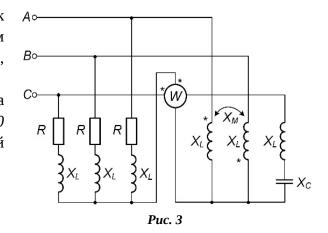
В цепи постоянного тока сопротивление нагрузки $R_{\rm H}=9~Om$. Известно, что при $E_1=200~B$ и $E_2=50~B$ мощность, выделяемая в нагрузке, $P_{\rm H}=81~Bm$, а при $E_1=100~B$ и $E_2=40~B$ выделяется мощность $P_{\rm H}=36~Bm$. Определите мощность, выделяемую в нагрузке, при $E_1=300~B$ и $E_2=50~B$.



Puc. 1

Шифр	
Задача №2	Баллы 14

Для схемы, изображённой на рис. 2, известны следующие параметры: $R_H = 20~Om$, $R_1 = 55,2~Om$, $X_{L1} = 86,4~Om$, $X_M = 20~Om$, $R_2 = 10~Om$, $X_{L2} = 40~Om$.

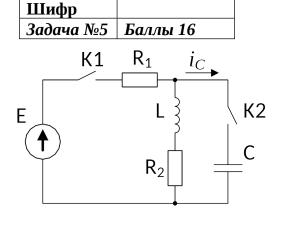

Определить, при каком сопротивлении конденсатора X_C ток на входе цепи и напряжение между зажимамиa и b совпадают по фазе. Определить входное сопротивление цепи относительно зажимов a и b.

Шифр	
Задача №3	Баллы 14

В трехфазной цепи, подключенной к симметричному источнику ЭДС с линейным напряжением 380В, работают два приемника, соединенные звездой без нейтрального провода.

Определить показание ваттметра электродинамической системы, если $R=X_C=10$ Ом, $X_L=20$ Ом, коэффициент индуктивной связи равен 0,5.

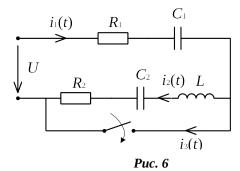
Шифр	
Задача №4	Баллы 20


Puc. 4

Для схемы, приведенной на рис. 4, известны следующие параметры элементов: $\omega L=10$ Ом, $R_2 = 30$ Ом, $R_3 = 15$ Oм,e(t) = $30\sqrt{2}\sin(\omega t)$ B. Мгновенные значения токов, выдаваемых управляемыми источниками тока имеют следующие зависимости:

$$\begin{split} j_2(U_1,t) &= J_{2m} \sin{(3\omega t)} = \frac{U_1\sqrt{2}}{75} \sin{(3\omega t)}; \\ j_3(U_1,t) &= J_{3m} \sin{(3\omega t)} = \frac{U_1\sqrt{2}}{50} \sin{(3\omega t)}, \end{split}$$

где U_1 - действующее значение напряжения на резистивном элементе R_2 . Требуется определить действующее значение тока I_3 через резистор R_3 .


В электрической цепи с постоянной ЭДС (рис. 5): $R_1=400$ Ом; $R_2=800$ Ом. После замыкания ключа K1, в момент времени t=0, ток равен $i_L(t)=0.5\left(1-e^{-6\cdot 10^3t}\right)$ А. Спустя 0.1155 мс замыкается ключ K2; корни характеристического уравнения при этом равны $p_1=-2\cdot 10^3c^{-1}$; $p_2=-3\cdot 10^3c^{-1}$. Определить закон изменения во времени тока $i_C(t)$.

Puc. 5

Известны параметры элементов схемы, представленной на рисунке $6: R_1 = 100 \text{ Ом}, R_2 = 200 \text{ Ом}, C_1 = 100 \text{ мк}\Phi, C_2 = 200 \text{ мк}\Phi, L = 1 \text{ Гн.}$ ЭДС источника напряжения составляет U = 300 В. Требуется определить величину заряда, который прошел через ветвь 3, и количество теплоты, выделившееся на резисторе R_1 .

Шифр	
Задача №6	Баллы 20

