Министерство образования и науки Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный энергетический университет имени В.И. Ленина»

УТВЕРЖЛАЮ
Проректор по НР
В.В. Тютиков
2014 г.

ПРОГРАММА

вступительного экзамена по специальной дисциплине

для направления подготовки высшего образования - подготовка кадров высшей квалификации по программам подготовки научно-педагогических кадров в аспирантуре

18.06.01 Химические технологии

Программа составлена в соответствии с требованиями федеральных государственных образовательных стандартов высшего образования по программам специалитета и магистратуры.

Программу составил

_д.т.н., профессор В.Е. Мизонов

Программа одобрена на заседании кафедры прикладной математики Протокол № от « → » 17 м 2014 г. Зав. кафедрой В.Е. Мизонов

1. Введение

Целью экзамена является выявить готовность претендента к освоению учебного плана аспирантской подготовки и его способность оперировать базовыми понятиями и закономерностями дисциплины при самостоятельной научной работе. Направление 180601 Химические технологии носит междисциплинарный характер. Значительная часть его разделов может быть взята из изучения теплотехнических и смежных дисциплин, что позволяет кандидатам, получившим образование по этим дисциплинам, подготовиться к сдаче экзамена путем изучения только специфически химических вопросов.

Общие требования к претенденту состоят в уверенном владении понятийным аппаратом разделов, перечисленных в пункте 3, а также знании основных закономерностей процессов переноса.

2. Процедура экзамена

Экзамен проводится в письменно-устной форме по билетам, приведенным ниже. Продолжительность письменной части экзамена — 90 мин. При его выполнении разрешается пользоваться справочными материалами. После окончания проводится собеседование по представленному письменному ответу, при котором могут задаваться дополнительные вопросы (преимущественно в рамках вопросов билета).

Результаты проведения вступительного испытания оформляются протоколом, в котором фиксируются вопросы экзаменаторов к поступающему. На каждого поступающего ведется отдельный протокол.

Протоколы приема вступительных испытаний после утверждения хранятся в личном деле поступающего.

Решение экзаменационной комиссии размещается на официальном сайте и на информационном стенде приемной комиссии не позднее трех дней с момента проведения вступительного испытания

3. Содержание

Процессы и аппараты химических технологий

- 1. Классификация процессов химической технологии по движущим силам. Гидромеханические, тепловые, массообменные (диффузионные), механические и химические процессы. Основные законы, связывающие потоки и движущие силы в этих процессах.
 - 2. Гидромеханические процессы. Введение в гидромеханику.

Основные характеристики жидкой среды. Несжимаемые и сжимаемые жидкости. Вязкость. Ньютоновские и неньютоновские жидкости. Поверхностные и массовые силы.

Уравнение неразрывности в интегральной и дифференциальной форме. Уравнение расхода.

Уравнение движения в напряжениях. Уравнения Навье-Стокса. Установившееся движение жидкости в круглой трубе.

Ламинарный и турбулентный режимы течения жидкости. Критерий Рейнольдса. Уравнения Рейнольдса для турбулентного течения. Модели турбулентности.

Уравнение энергии. Уравнение Бернулли для идеальной и вязкой жидкости. Способы представления потерь давления (местные и распределенные сопротивления).

Основные типы насосов и их напорные характеристики. Основы расчета трубопроводов.

Движение жидкости (газа) с твердыми частицами. Движение одиночной частицы в потоке жидкости. Скорость гравитационного и центробежного осаждения. Уравнения движения частицы в плоском вихревом потоке с центральным стоком.

Движение ансамбля взаимодействующих частиц. Уравнение Фоккера-Планка.

Основные понятия теории подобия и анализа размерностей. Основные критерии гидродинамического подобия.

3. Тепловые процессы.

Теплопроводность. Закон Фурье. Уравнение теплопроводности в векторной форме. Одномерное уравнение (плоская стенка). Виды граничных условий. Случай многослойной стенки.

Теплоотдача. Конвективный теплообмен. Вынужденная и естественная конвекция. Закон Ньютона. Коэффициент теплоотдачи. Теплопередача через плоскую стенку и круглую трубу.

Теплообмен излучением. Закон Стефана-Больцмана. Теплообмен излучением между поверхностями твердых тел и между газом и поверхностью.

Теплообмен при конденсации паров и при кипении.

Основные понятия теории подобия и анализа размерностей. Основные критерии теплового подобия.

4. Процессы диффузии и массопереноса.

Явление диффузии. Закон Фика. Уравнение диффузии в векторной форме. Одномерное уравнение. Виды граничных условий. Многокомпонентная диффузия.

Конвективная диффузия. Уравнение конвективной диффузии в векторной форме. Одномерное уравнение. Виды граничных условий.

Массоперенос через границу раздела фаз.

Сопряженные процессы тепло- и массопереноса.

Основные понятия теории подобия и анализа размерностей. Основные критерии диффузионного подобия.

5. Основные тепло- и массообменные процессы химической технологии, их базовые расчетные зависимости и схемы аппаратурного оформления:

- Сушка
- Дистилляция и ректификация
- Абсорбция и адсорбция
- Экстрагирование
- Кристаллизация
- Выпаривание

6. Механические процессы. Процессы в дисперсных средах.

Основные физико-механические свойства сыпучей среды и способы их экспериментального определения. Фракционный состав и его анализ. Внутреннее трение. Поверхностные силы.

Измельчение. Способы измельчения и реализующие их мельницы. Энергетические законы измельчения. Преобразование фракционного состава при измельчении. Кинетические закономерности измельчения.

Фракционирование (классификация). Преобразование фракционного состава при классификации. Кривая разделения и основные критерии эффективности классификации.

Грохочение и основные типы и характеристики грохотов.

Пневматическая классификация (гравитационная, центробежная, инерционная), основные типы и характеристики пневмоклассификаторов.

Технологические системы измельчения-классификации. Основные подходы к моделированию и расчету.

Псевдоожижение. Аппараты с кипящим слоем и их основные характеристики. Основные режимы псевдоожижения.

Гранулирование. Основные типы грануляторов. Особенности кинетики гранулирования.

Агломерация, ее основные кинетические закономерности и типы аппаратурного оформления.

Смешение сыпучих материалов. Основные критерии однородности смеси. Однородность в пространстве и во времени. Типы смесителей.

7. Химические реакторы

Области применения химических аппаратов и их классификация (гомогенные, гетерогенные, некаталитические, каталитические процессы и т.д.).

Основные механизмы химических реакций, их порядок. Скорость реакции, степень превращения, избирательность, тепловые эффекты и т.д.

Основные модели движения среды в химических реакторах. Ячеечные модели.

4. Вопросы к вступительному экзамену Процессы и аппараты химических технологий

Билет 1.

- Уравнение неразрывности в интегральной и дифференциальной форме. Уравнение расхола.
- Фракционирование (классификация). Преобразование фракционного состава при классификации. Кривая разделения и основные критерии эффективности классификации.
- Основные механизмы химических реакций, их порядок.

Билет 2.

- Уравнение Бернулли для идеальной и вязкой жидкости. Способы представления потерь давления (местные и распределенные сопротивления).
- Явление диффузии. Закон Фика. Уравнение диффузии в векторной форме. Одномерное уравнение. Виды граничных условий.
- Гранулирование. Основные типы грануляторов. Особенности кинетики гранулирования.

Билет 3.

- Конвективная диффузия. Уравнение конвективной диффузии в векторной форме. Одномерное уравнение. Виды граничных условий.
- Теплоотдача. Конвективный теплообмен. Вынужденная и естественная конвекция. Закон Ньютона. Коэффициент теплоотдачи. Теплопередача через плоскую стенку и круглую трубу.
- Основные модели движения среды в химических реакторах. Ячеечные модели.

Билет 4.

- Измельчение. Способы измельчения и реализующие их мельницы. Энергетические законы измельчения.
- Основные понятия теории подобия и анализа размерностей. Основные критерии теплового подобия.
- Грохочение и основные типы и характеристики грохотов.

Билет 5.

- Смешение сыпучих материалов. Основные критерии однородности смеси. Однородность в пространстве и во времени. Типы смесителей.
- Движение одиночной частицы в потоке жидкости. Скорость гравитационного и центробежного осаждения.
- Фракционный состав сыпучего материала и его анализ.

Билет 6.

- Базовые расчетные зависимости и схемы аппаратурного оформления процесса сушки
- Псевдоожижение. Аппараты с кипящим слоем и их основные характеристики. Основные режимы псевдоожижения.
- Основные понятия теории подобия и анализа размерностей. Основные критерии гидродинамического подобия.

Билет 7.

- Пневматическая классификация (гравитационная, центробежная, инерционная), основные типы и характеристики пневмоклассификаторов.
- Теплопроводность. Закон Фурье. Уравнение теплопроводности в векторной форме. Одномерное уравнение (плоская стенка). Виды граничных условий.
- Ламинарный и турбулентный режимы течения жидкости. Критерий Рейнольдса.

Билет 8.

- Сопряженные процессы тепло- и массопереноса.
- Основные типы насосов и их напорные характеристики. Основы расчета трубопроводов.
- Скорость химической реакции, степень превращения, избирательность, тепловые эффекты

Билет 9.

- Пневматическая классификация (гравитационная, центробежная, инерционная), основные типы и характеристики пневмоклассификаторов.
- Основные характеристики жидкой среды. Несжимаемые и сжимаемые жидкости. Вязкость. Ньютоновские и неньютоновские жидкости.
- Преобразование фракционного состава при измельчении. Кинетические закономерности измельчения.

Билет 10.

- Агломерация, ее основные кинетические закономерности и типы аппаратурного оформления.
- Установившееся ламинарное движение жидкости в круглой трубе.
- Теплообмен при конденсации паров и при кипении.

5. Рекомендуемая литература

- 1. Процессы и аппараты химической технологии. Явления переноса, макрокинетика, подобие, моделирование, проектирование. . Т.1. Основы теории процессов химической технологии. Под ред. А.М. Кутепова. М: «Логос», 2000.
- 2. Процессы и аппараты химической технологии. Явления переноса, макрокинетика, подобие, моделирование, проектирование. Т.2. Механические и гидромеханические процессы. Под ред. А.М. Кутепова. М: «Логос», 2002.
- 3. Mizonov V., Zhukov V., Bernotat S. Simulation of Grinding: New Approaches. ISPEU Press, Ivanovo, 1996.
- 4. Mizonov V., Zhukov V., Filitchev P., Tochyonova N. Selected Mathematical Problems of Particle Technology. ISPEU Press, Ivanovo, 1997, 36p.
- 5. Мизонов В.Е., Ушаков С.Г. Аэродинамическая классификация порошков. М.: Химия, 1989.
- 6. Кафаров В.В. Методы кибернетики в химии и химической технологии. М.: Химия, 1985, 445с.
- 7. Касаткин А.Г. Основные процессы и аппараты химической технологии. Изд. 9-е, М.: Химия, 1973, 750с.
- 8. Кафаров В.В. Основы массопередачи. М.: Высшая школа, 1979, 412с.
- 9. Гельперин Н.И. Основные процессы и аппараты химической технологии. М.: Химия, 1961, ч.1 (384с.), ч.2 (811с.).
- 10. Корсаков-Богатков С.М. Химические ректоры как объекты математического моделирования. М.: Химия, 1967. 224с.