федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет имени В.И. Ленина»

На правах рукописи

zaut

ЗАЙЦЕВ ЕВГЕНИЙ СЕРГЕЕВИЧ

РАЗРАБОТКА МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ И АЛГОРИТМОВ СИСТЕМЫ МОНИТОРИНГА ПРОПУСКНОЙ СПОСОБНОСТИ КАБЕЛЬНЫХ ЛИНИЙ НАПРЯЖЕНИЕМ 110–500 кВ

Специальность 05.14.02 «Электрические станции и электроэнергетические системы»

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата технических наук

Том 2

ПРИЛОЖЕНИЯ

Научный руководитель: кандидат технических наук, доцент Лебедев В.Д.

ИВАНОВО 2016

оглавление

Приложение А	
Приложение Б	6
Приложение В	
Приложение Г	
Приложение Д	15
Приложение Е	
Приложение Ж	
Приложение И	
Приложение К	
Приложение Л	49
Приложение М	55
Приложение Н	79
Приложение П	
Приложение Р	
Приложение С	100
Приложение Т	101
Приложение У	102

Приложение А

(обязательное)

Вычислительный сценарий для расчёта распределения температуры в сечении коаксиального экранированного кабеля и окружающем пространстве в программе

MATLAB

%% Исходные данные

gamma_Cu=5e7; % Электропроводность меди при t=80 C (См/м)

lymda_Cu=400; % Теплопроводность меди, Вт/(м К)

lymda_Pe=0.235; % Теплопроводность полиэтилена, Вт/(м*К)

lymda_Gr=1; % Теплопроводность грунта, Вт/(м К)

- S_g_Cu=0.0012; % Площадь поперечного сечения жилы (по меди) (кв.м)
- S_e_Cu=0.000185; % Площадь поперечного сечения экрана (по меди) (кв.м)

alfa=1; % Коэффициент при граничном условии третьего рода Вт/(кв.м*С)

- r1=0.0428/2; % Радиус жилы
- r2=0.0938/2; % Наружный радиус внутренней изоляции
- r3=0.0978/2; % Наружный радиус экрана
- r4=0.1118/2; % Наружный радиус внешней изоляции
- r5=4/2; % Радиус внешней границы модели
- Sg=pi*r1^2; % Площадь поперечного сечения жилы

Se=pi*(r3^2-r2^2); % Площадь поперечного сечения экрана

t0=10; % Температура окружающей среды

%% Расчёт эквивалентной проводимости жилы и экрана с учётом их заполнения

gamma_g_ekv=gamma_Cu*S_g_Cu/Sg; % Проводимость жилы

gamma_e_ekv=gamma_Cu*S_e_Cu/Se; % Проводимость экрана

%% Установка цикла для перебора значений параметра к

k=[0 0.2 0.4 0.6];

for n=1:1:length(k)

%% Расчёт плотностей токов

I_g=1240; % Ток жилы

I_e=I_g*k(n); % Ток экрана

delta_g=I_g/Sg; % эквивалентная плотность тока жилы

delta_e=I_e/Se; % эквивалентная плотность тока экрана

%% Решение уравнения теплопроводности относительно граничных условий

 $t5=t0+(delta_g^2*Sg/gamma_g_ekv+delta_e^2*Se/gamma_e_ekv)/(2*pi*r5*alfa);$

% t5 - температура на границе расчётной области

 $t4=t5+(delta_g^2*Sg/gamma_g_ekv+delta_e^2*Se/gamma_e_ekv)/(2*pi*lymda_Gr)*log(r5/r 4);$

% t4 - температура на стыке поверхности кабеля и грунта

t3=t4+(delta_g^2*Sg/gamma_g_ekv+delta_e^2*Se/gamma_e_ekv)/(2*pi*lymda_Pe)*log(r4/r 3);

% t3 - температура на поверхности экрана

t2=t3+(delta_g^2*Sg/gamma_g_ekv-

 $delta_e^2*pi*r2^2/gamma_e_ekv)/(2*pi*lymda_Cu)*log(r3/r2)...$

+delta_e^2/(4*gamma_e_ekv*lymda_Cu)*(r3^2-r2^2);

% t2-температура на стыке между внутренней изоляцией из сшит.полиэтилена и экрана

 $t1=t2+(delta_g^2*Sg/gamma_g_ekv)/(2*pi*lymda_Pe)*log(r2/r1);$

%% Определение температуры на основе решения кусочно-заданных функций

r11=0:0.0001:r1;

t11=t1+delta_g^2/(gamma_g_ekv*4*lymda_Cu)*(r1^2-r11.^2);

r22=r1:0.001:r2;

 $t22 = t2 + (delta_g^2 Sg/gamma_g_ekv)/(2*pi*lymda_Pe)*log(r2./r22);$

r33=r2:0.0001:r3;

```
t33=t3+(delta_g^2*Sg/gamma_g_ekv-
```

```
delta_e^2*pi*r2^2/gamma_e_ekv)/(2*pi*lymda_Cu)*log(r3./r33)...
```

+delta_e^2/(4*gamma_e_ekv*lymda_Cu)*(r3^2-r33.^2);

r44=r3:0.0001:r4;

```
t44 = t4 + (delta_g^2 Sg/gamma_g_ekv + delta_e^2 Se/gamma_e_ekv) / (2*pi*lymda_Pe)*log(r4.
```

/r44);

r55=r4:0.001:r5;

```
t55 = t5 + (delta_g^2 Sg/gamma_g_ekv + delta_e^2 Se/gamma_e_ekv) / (2*pi*lymda_Gr) + (delta_g^2 Sg/gamma_g_ekv + delta_e^2 Se/gamma_e_ekv) / (2*pi*lymda_Gr) + (delta_g^2 Sg/gamma_g_ekv + delta_e^2 Se/gamma_e_ekv) / (2*pi*lymda_Gr) + (delta_g^2 Se/gamma_g_ekv + delta_e^2 Se/gamma_e_ekv) / (2*pi*lymda_Gr) + (delta_g^2 Se/gamma_g_ekv + delta_e^2 Se/gamma_e_ekv) / (2*pi*lymda_Gr) + (delta_g^2 Se/gamma_g_ekv + delta_e^2 Se/gamma_e_ekv) / (2*pi*lymda_Gr) + (delta_g^2 Se/gamma_eekv) / (2*pi*lymda_Gr) + (delta_g^2 Se/gamma_eekv) / (de
```

*log(r5./r55);

r=[r11 r22 r33 r44 r55]; t=[t11 t22 t33 t44 t55];

plot(r,t); % функции построения графика

hold on

end

Приложение Б

(обязательное)

Описание построения компьютерной модели в программе COMSOL Multiphysics установившегося теплового поля на основе метода конечных элементов

Для создания модели теплового поля в программе COMSOL Multiphysics необходимо выбрать соответствующий тематический раздел: Heat Transfer Module/General Heat Transfer. В случае выбора стационарного решателя, в этом разделе решается дифференциальное уравнение теплопроводности Фурье, которое представлено в следующем виде:

$$\nabla \cdot \left(-\lambda \nabla T \right) = q_V. \tag{B.1}$$

В поле построения геометрии создаём модель по параметрам из таблицы 2.3. Тепловые характеристики областей устанавливаем в соответствии с данными таблицы 2.4, а значения проводимостей жилы и экрана принимаем в соответствии со значениями, рассчитанными по формулам (2.41) и (2.42). В качестве граничных условий принимаем условия третьего рода с коэффициентом $a = \lambda_c = 1$ Bt/(м²·°C).

Чтобы вычислить величину тепловыделения в токоведущих частях кабеля необходимо в окне Constants записать последовательность выражений, представленную в таблице Б.1:

Название константы	Выражение	Описание
k	0	Коэффициент тока в экране
r1	0.0428/2	Радиус жилы
r2	0.0938/2	Наружный радиус изоляции
r3	0.0978/2	Наружный радиус экрана
Sg	pi*r1^2	Площадь поперечного сечения жилы
Se	pi*(r3^2-r2^2)	Площадь поперечного сечения экрана
gamma_g_ekv	gamma_Cu*S_g_Cu/Sg	Эквивалентная проводимость жилы
gamma_e_ekv	gamma_Cu*S_e_Cu/Se	Эквивалентная проводимость экрана
I_g	1240	Ток жилы
I_e	I_g*k	Ток экрана
delta_g	I_g/Sg	Плотность тока в жиле

delta_e	I_e/Se	Плотность тока в экране
Qg	delta_g^2/gamma_g_ekv	Объёмная плотность тепловыделения в жиле
Qe	delta_e^2/gamma_e_ekv	Объёмная плотность тепловыделения в экране

7

Коэффициент k является переменным параметром, определяющим отношение тока в экране к току в жиле. В настройке параметров решателя выбираем параметрический расчёт и задаём значения параметра k = [0; 0,2; 0,4; 0,6].

Приложение В

(обязательное)

Вычислительный сценарий для расчёта температуры жилы коаксиального экранированного кабеля при изменении внешней границы расчёта в программе

MATLAB

%% Расчёт теплового поля идеального кабеля

gamma_Cu=5e7; % Электропроводность меди при t=80 C (См/м)

lymda_Cu=400; % Теплопроводность меди, Вт/(м К)

lymda_Pe=0.235; % Теплопроводность полиэтилена, Вт/(м*К)

lymda_Gr=1; % Теплопроводность грунта, Вт/(м К)

S_g_Cu=0.0012; % Площадь поперечного сечения жилы (по меди) (кв.м)

S_e_Cu=0.000185; % Площадь поперечного сечения экрана (по меди) (кв.м)

alfa=1; % Коэффициент при граничном условии третьего рода Вт/(кв.м*С)

r1=0.0428/2; % Радиус жилы

r2=0.0938/2; % Наружный радиус внутренней изоляции

r3=0.0978/2; % Наружный радиус экрана

r4=0.1118/2; % Наружный радиус внешней изоляции

r5=0.2:0.1:20; % Радиус внешней границы модели

Sg=pi*r1^2; % Площадь поперечного сечения жилы

Se=pi*(r3^2-r2^2); % Площадь поперечного сечения экрана

%% Расчёт эквивалентной проводимости жилы и экрана с учётом их заполнения

gamma_g_ekv=gamma_Cu*S_g_Cu/Sg; % Проводимость жилы

gamma_e_ekv=gamma_Cu*S_e_Cu/Se; % Проводимость экрана

%% Режимные параметры

I_g=1240; % Ток жилы

I_e=I_g*0.6; % Ток экрана

t0=10; % Температура окружающей среды

delta_g=I_g/Sg; % эквивалентная плотность тока жилы

delta_e=I_e/Se; % эквивалентная плотность тока экрана

%% Обнуление температуры жилы

t11=0;

%% Установка цикла для перебора значений радиуса внешней границы модели

for n = 1:1:length(r5)

%% Решение системы уравнений относительно граничных условий

 $t5=t0+(delta_g^2*Sg/gamma_g_ekv+delta_e^2*Se/gamma_e_ekv)/(2*pi*r5(n)*alfa);$

% t5 - температура на границе расчётной области

```
t4=t5+(delta_g^2*Sg/gamma_g_ekv+delta_e^2*Se/gamma_e_ekv)/(2*pi*lymda_Gr)*log(r5(n )/r4);
```

% t4 - температура на стыке поверхности кабеля и грунта

```
t3=t4+(delta_g^2*Sg/gamma_g_ekv+delta_e^2*Se/gamma_e_ekv)/(2*pi*lymda_Pe)*log(r4/r 3);
```

% t3 - температура на поверхности экрана

t2=t3+(delta_g^2*Sg/gamma_g_ekv-

```
delta_e^2*pi*r2^2/gamma_e_ekv)/(2*pi*lymda_Cu)*log(r3/r2)...
```

```
+delta_e^2/(4*gamma_e_ekv*lymda_Cu)*(r3^2-r2^2);
```

% t2-температура на стыке между внутренней изоляцией из сшит.полиэтилена и экрана

```
t1=t2+(delta_g^2*Sg/gamma_g_ekv)/(2*pi*lymda_Pe)*log(r2/r1);
```

```
% % Определение температуры жилы
```

r11=0;

```
t11(n)=t1+delta_g^2/(gamma_g_ekv*4*lymda_Cu)*(r1^2-r11^2);
```

end

plot(r5,t11); % функции построения графика

hold on

Приложение Г

(обязательное)

Вычислительный сценарий для расчёта зависимости температуры в центре жилы от радиуса нижней границы для теплового поля одного кабеля

%% Вычислительный сценарий для расчёта зависимости температуры в центре жилы от

радиуса нижней границы расчёта

n=0; % Индекс

R=0; % Радиус нижней границы расчёта

Т1=0; % Температура в центре жилы

for r = 3:1:50 % Организация цикла по перебору значений R

n=n+1; % Присвоение следующего значения индекса по порядку

R(n)=r; % Запись текущего значения радиуса нижней границы в массив R

%% Далее идёт вычислительный сценарий полевого расчёта

```
flclear fem
% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = ":
vrsn.major = 0;
vrsn.build = 494;
vrsn.rcs = '$Name: $';
vrsn.date = '$Date: 2008/09/19 16:09:48 $';
fem.version = vrsn;
% Geometry
parr=\{point2(0,0)\};\
g1=geomcoerce('point',parr);
g2=circ2('0.0214','base','center','pos',{'0','0'},'rot','0');
g3=circ2('0.0469','base','center','pos',{'0','0'},'rot','0');
g4=circ2('0.0489','base','center','pos',{'0','0'},'rot','0');
g5=circ2('0.0559','base','center','pos',{'0','0'},'rot','0');
carr={curve2([-r,r],[1.5,1.5],[1,1]), ...
```

```
curve2([r,r,0],[1.5,-(r-1.5),-(r-1.5)],[1,0.7071067811865475,1]), ...
 curve2([0,-r,-r],[-(r-1.5),-(r-1.5),1.5],[1,0.7071067811865475,1])};
g6=geomcoerce('solid',carr);
% Analyzed geometry
clear p s
p.objs=\{g1\};
p.name={'PT1'};
p.tags={'g1'};
s.objs={g2,g3,g4,g5,g6};
s.name={'C1','C2','C3','C4','CO1'};
s.tags={'g2','g4','g6','g8','g9'};
fem.draw=struct('s',s);
fem.geom=geomcsg(fem);
% Constants
fem.const = \{ k', 0.6', \dots \}
 'gamma_Cu','5e7', ...
 'lymda_Cu','400', ...
 'lymda_Pe','0.235', ...
 'lymda_Gr','1', ...
 'S_g_Cu','0.0012', ...
 'S_e_Cu','0.000185', ...
 'r1','0.0428/2', ...
 'r2','0.0938/2', ...
 'r3','0.0978/2', ...
 'Sg','pi*r1^2', ...
 'Se','pi*(r3^2-r2^2)', ...
 'gamma_g_ekv','gamma_Cu*S_g_Cu/Sg', ...
 'gamma_e_ekv','gamma_Cu*S_e_Cu/Se', ...
 'I_g','1240', ...
 'I_e','I_g*k', ...
 'T0','10', ...
 'delta_g','I_g/Sg', ...
```

```
'delta_e','I_e/Se', ...
 'Qg','delta_g^2*Sg/gamma_g_ekv', ...
 'Qe','delta_e^2*Se/gamma_e_ekv'};
% Initialize mesh
fem.mesh=meshinit(fem, ...
           'hauto',1);
% Application mode 1
clear appl
appl.mode.class = 'GeneralHeat';
appl.module = 'HT';
appl.shape = {'shlag(1, "J")', 'shlag(2, "T")'};
appl.assignsuffix = '_htgh';
clear prop
prop.analysis='static';
appl.prop = prop;
clear bnd
bnd.type = \{ 'q', 'q', 'cont' \};
bnd.shape = 1;
bnd.T0 = {'273.15+T0', 273.15, 273.15};
bnd.Tinf = {'273.15+T0','273.15+T0',273.15};
bnd.h = {'alfa',0,0};
appl.bnd = bnd;
clear equ
equ.sdtype = 'gls';
equ.rho = 0;
equ.shape = 2;
equ.C = 0;
equ.Q = \{0,0,'Qe/Se','Qg/Sg'\};
equ.k = {'lymda_Gr','lymda_Pe','lymda_Cu','lymda_Cu'};
equ.ind = [1,2,3,2,4];
appl.equ = equ;
```

```
fem.appl{1} = appl;
```

fem.frame = {'ref'};

fem.border = 1;

fem.outform = 'general';

clear units;

units.basesystem = 'SI';

```
fem.units = units;
```

% Coupling variable elements

clear elemcpl

% Integration coupling variables

clear elem

```
elem.elem = 'elcplscalar';
```

elem.g = $\{'1'\};$

 $\operatorname{src} = \operatorname{cell}(1,1);$

```
\operatorname{src}\{1\} = \{\{\}, \{\}, \{\}\};\
```

```
elem.src = src;
```

```
geomdim = cell(1,1);
```

```
geomdim\{1\} = \{\};
```

```
elem.geomdim = geomdim;
```

```
elem.var = \{\};
```

```
elem.global = { };
```

```
elem.maxvars = { };
```

```
elemcpl{1} = elem;
```

```
fem.elemcpl = elemcpl;
```

```
% Global expressions
```

```
fem.globalexpr = {'qpx','((Qg+Qe)*x)/(2*pi*(x^2+y^2))', ...
```

```
'qmx','-((Qg+Qe)*x)/(2*pi*(x^2+(y-2*h1)^2))', ...
```

```
'qpy','((Qg+Qe)*y)/(2*pi*(x^2+y^2))', ...
```

```
'qmy','-((Qg+Qe)*(y-2*h1))/(2*pi*(x^2+(y-2*h1)^2))', ...
```

'qx','qpx+qmx', ...

```
'qy','qpy+qmy', ...
```

```
'q','sqrt(qx^2+qy^2)', ...
```

 $\label{eq:constraint} \end{tabular} \end{t$

'alfa','1.163*sqrt(2.1)*(6+3.1*(273.15+T0-T)/2.1^2)'};

% ODE Settings

clear ode

clear units;

units.basesystem = 'SI';

ode.units = units;

fem.ode=ode;

% Multiphysics

fem=multiphysics(fem);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femstatic(fem, ...

'solcomp',{'T'}, ...

'outcomp',{'T'}, ...

'blocksize', 'auto');

% Save current fem structure for restart purposes

fem0=fem;

```
% Запись текущего значения темперетуры в центре жилы в массив Т1
```

```
T1(n)=postint(fem,'T', ...
```

```
'unit','degC', ...
'recover','off', ...
'dl',[11], ...
```

'edim',0);

end

plot(R, T1); % Построение графика

Приложение Д

(обязательное)

Последовательности выражений для определения граничных условий в компьютерных моделях, созданных в программе COMSOL Multiphysics для случаев расположения фаз кабельной линии треугольником и в плоскости

Таблица Д.1. Выражения для проекции вектора теплового потока на нормаль к границе области расчёта при расположении фаз кабельной линии треугольником

Название	Выражение	Описание
переменнои		
Qk	Qg+Qe	Тепловыделение одном кабеле
qax	Qk*(x+D/2)/(2*pi*((x+D/2)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы А на ось Ох
qay	$Qk^{*}(y+h1)/(2^{*}pi^{*}((x+D/2)^{2}+(y+h1)^{2}))$	Проекция вектора теплового потока от
		фазы А на ось Оу
qbx	$Qk*x/(2*pi*((x)^2+(y+h1-D*sqrt(3)/2)^2))$	Проекция вектора теплового потока от
		фазы В на ось Ох
qby	Qk*(y+h1-D*sqrt(3)/2)/(2*pi*((x)^2+(y+	Проекция вектора теплового потока от
	+h1-D*sqrt(3)/2)^2))	фазы В на ось Оу
qcx	Qk*(x-D/2)/(2*pi*((x-D/2)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы С на ось Ох
qcy	Qk*(y+h1)/(2*pi*((x-D/2)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы С на ось Оу
qiax	$-Qk^{*}(x+D/2)/(2*pi^{*}((x+D/2)^{2}+(y-h1)^{2}))$	Проекция вектора теплового потока от
		изображения фазы А на ось Ох
qiay	-Qk*(y-h1)/(2*pi*((x+D/2)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы А на ось Оу
qibx	$-Qk*x/(2*pi*((x)^2+(y-h1+$	Проекция вектора теплового потока от
	+D*sqrt(3)/2)^2))	изображения фазы В на ось Ох
qiby	-Qk*(y-h+D*sqrt(3)/2)/(2*pi*((x)^2+	Проекция вектора теплового потока от
	+(y-h1+D*sqrt(3)/2)^2))	изображения фазы В на ось Оу
qicx	-Qk*(x-D/2)/(2*pi*((x-D/2)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы С на ось Ох
qicy	-Qk*(y-h1)/(2*pi*((x-D/2)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы С на ось Оу
q0x	qax+qbx+qcx+qiax+qibx+qicx	Проекция результирующего вектора

		теплового потока на ось Ох
q0y	qay+qby+qcy+qiay+qiby+qicy	Проекция результирующего вектора
		теплового потока на ось Оу
q0	$sqrt(q0x^2+q0y^2)$	Модуль результирующего вектора
		теплового потока
q0n	$q0*\cos(a\cos(y/sqrt(x^2+y^2))-$	Проекция результирующего вектора
	-acos(q0y/q0))	теплового потока на нормаль к границе
		расчёта

Таблица Д.2. Выражения для проекции вектора теплового потока на нормаль к границе области расчёта при расположении фаз кабельной линии в плоскости

Название переменной	Выражение	Описание
Qk	Qg+Qe	Тепловыделение одном кабеле
qax	Qk*(x+D/2)/(2*pi*((x+D/2)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы А на ось Ох
qay	Qk*(y+h1)/(2*pi*((x+D/2)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы А на ось Оу
qbx	Qk*x/(2*pi*((x)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы В на ось Ох
qby	Qk*(y+h1)/(2*pi*((x)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы В на ось Оу
qcx	Qk*(x-D/2)/(2*pi*((x-D/2)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы С на ось Ох
qcy	Qk*(y+h1)/(2*pi*((x-D/2)^2+(y+h1)^2))	Проекция вектора теплового потока от
		фазы С на ось Оу
qiax	-Qk*(x+D/2)/(2*pi*((x+D/2)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы А на ось Ох
qiay	-Qk*(y-h1)/(2*pi*((x+D/2)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы А на ось Оу
qibx	-Qk*x/(2*pi*((x)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы В на ось Ох
qiby	-Qk*(y-h)/(2*pi*((x)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы В на ось Оу
qicx	-Qk*(x-D/2)/(2*pi*((x-D/2)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы С на ось Ох
qicy	-Qk*(y-h1)/(2*pi*((x-D/2)^2+(y-h1)^2))	Проекция вектора теплового потока от
		изображения фазы С на ось Оу

q0x	qax+qbx+qcx+qiax+qibx+qicx	Проекция результирующего вектора
		теплового потока на ось Ох
q0y	qay+qby+qcy+qiay+qiby+qicy	Проекция результирующего вектора
		теплового потока на ось Оу
q0	sqrt(q0x^2+q0y^2)	Модуль результирующего вектора
		теплового потока
q0n	$q0*\cos(a\cos(y/sqrt(x^2+y^2))-$	Проекция результирующего вектора
	-acos(q0y/q0))	теплового потока на нормаль к границе
		расчёта

Приложение Е

(обязательное)

Описание построения мультифизической модели теплового и электромагнитного полей в сечении КЛ с учётом схемы соединения токопроводящих элементов конструкции кабелей в программе COMSOL Multiphysics

Чтобы выполнить расчёт цепи, содержащей массивные токопроводящие элементы кабелей, в программе COMSOL Multiphysics необходимо:

1) в меню Options выбрать Integration Coupling Variables \rightarrow Subdomain Variables, затем в списке Subdomain selection для соответствующих областей ввести переменные в соответствии с таблицей E.1, в этом случае программа будет вычислять соответствующие токи в элементах конструкции кабелей по формуле E.1;

Таблица Е.1. Интегральные переменные

Название переменной	Выражение	Описание
IgA	Jz_emqa	Ток в жиле фазы «А»
IgB	Jz_emqa	Ток в жиле фазы «В»
IgC	Jz_emqa	Ток в жиле фазы «С»
IeA	Jz_emqa	Ток в экране фазы «А»
IeB	Jz_emqa	Ток в экране фазы «В»
IeC	Jz_emqa	Ток в экране фазы «С»

$$\dot{I}_i = \int_{S_i} \dot{\delta}_z^i dS , \qquad (E.1)$$

где I_i – ток в *i*-м проводнике, A; δ_z^i – z-компонента плотности тока в *i*-м проводнике, A/м²; S_i – площадь поперечного сечения *i*-го проводника, м²;

2) в меню Options выбрать Expression → Global Expression и ввести переменные продольных напряжений на проводниках с начальным значением 1 В в соответствии с таблицей Е.2;

Таблица Е.2. Переменные продольных напряжений

Название переменной	Выражение	Описание
UgA	1	Напряжение на жиле фазы «А»
UgB	1	Напряжение на жиле фазы «В»
UgC	1	Напряжение на жиле фазы «С»

UeA	1	Напряжение на экране фазы «А»
UeB	1	Напряжение на экране фазы «В»
UeC	1	Напряжение на экране фазы «С»

3) в меню Physics выбрать пункт SPICE Circuit Edditor, поставить галочку около надписи «Force AC analysis» и ввести следующий текст:

IsourceA 0 1 1

IsourceB 0 2 1

IsourceC 0 3 1

XCoreA 1 0 CoreA

.SUBCKT CoreA IgA UgA COMSOL: *

.ENDS

XCoreB 2 0 CoreB

.SUBCKT CoreB IgB UgB COMSOL: *

.ENDS

XCoreC 3 0 CoreC

.SUBCKT CoreC IgC UgC COMSOL: *

.ENDS

XShealdA 0 0 ShealdA

.SUBCKT ShealdA IeA UeA COMSOL: *

.ENDS

XShealdB 0 0 ShealdB

.SUBCKT ShealdB IeB UeB COMSOL: *

.ENDS

XShealdC 0 0 ShealdC

.SUBCKT ShealdC IeC UeC COMSOL: *

.ENDS,

где терминалы присоединения элементов цепи соответствуют номерам потенциалов в схеме на рис. 2.30;

4) в меню Options выбрать Constants и изменить значения переменных: freq_cir на 50 (Гц), sim_ISOURCEA_ARG на $1055\sqrt{2}$ (A), sim_ISOURCEB_ARG на $1055\sqrt{2}e^{-j120^{\circ}}$ (A), sim_ISOURCEB_ARG на $1055\sqrt{2}e^{j120^{\circ}}$ (A).

После проделанных операций в окне Global Expression автоматически появятся выражения, которые являются системой линейных уравнений для токов и напряжений в цепи, изображённой на рисунке 2.30. Эти выражения приведены в таблице Е.3.

Название переменной	Выражение	Описание
UgA	sim_XCOREA_v	Напряжение на жиле фазы «А»
UgB	sim_XCOREB_v	Напряжение на жиле фазы «В»
UgC	sim_XCOREC_v	Напряжение на жиле фазы «С»
UeA	sim_XSHEALDA_v	Напряжение на экране фазы «А»
UeB	sim_XSHEALDB_v	Напряжение на экране фазы «В»
UeC	sim_XSHEALDC_v	Напряжение на экнане фазы «С»
sim_XCOREC_p_v	sim_XCOREC_v+sim_XCOREC_n_v	XCOREC.p.v
sim_XCOREC_p_i	sim_ISOURCEC_i	XCOREC.p.i
sim_XCOREC_n_v	sim_GROUND_p_v	XCOREC.n.v
sim_XCOREC_n_i	-sim_XCOREC_p_i	XCOREC.n.i
sim_XCOREC_i	sim_XCOREC_p_i	XCOREC.i
sim_XSHEALDC_p_v	sim_XCOREC_n_v	XSHEALDC.p.v
sim_XSHEALDC_p_i	-sim_XSHEALDC_n_i	XSHEALDC.p.i
sim_XSHEALDC_n_v	sim_XCOREC_n_v	XSHEALDC.n.v
sim_XSHEALDC_n_i	-IeC	XSHEALDC.n.i
sim_XSHEALDC_i	sim_XSHEALDC_p_i	XSHEALDC.i
sim_XSHEALDB_p_v	sim_XCOREC_n_v	XSHEALDB.p.v
sim_XSHEALDB_p_i	-sim_XSHEALDB_n_i	XSHEALDB.p.i
sim_XSHEALDB_n_v	sim_XCOREC_n_v	XSHEALDB.n.v
sim_XSHEALDB_n_i	-IeB	XSHEALDB.n.i
sim_XSHEALDB_i	sim_XSHEALDB_p_i	XSHEALDB.i
sim_XCOREB_p_v	sim_XCOREB_v+sim_XCOREB_n_v	XCOREB.p.v
sim_XCOREB_p_i	sim_ISOURCEB_i	XCOREB.p.i
sim_XCOREB_n_v	sim_XCOREC_n_v	XCOREB.n.v
sim_XCOREB_n_i	-sim_XCOREB_p_i	XCOREB.n.i
sim_XCOREB_i	sim_XCOREB_p_i	XCOREB.i
sim_XSHEALDA_p_v	sim_XCOREC_n_v	XSHEALDA.p.v
sim_XSHEALDA_p_i	-sim_XSHEALDA_n_i	XSHEALDA.p.i
sim_XSHEALDA_n_v	sim_XCOREC_n_v	XSHEALDA.n.v
sim_XSHEALDA_n_i	-IeA	XSHEALDA.n.i
sim_XSHEALDA_i	sim_XSHEALDA_p_i	XSHEALDA.i

Таблица Е.3. Система линейных уравнений для рассчитываемой электрической цепи

sim_XCOREA_p_v	sim_XCOREA_v+sim_XCOREC_n_v	XCOREA.p.v
sim_XCOREA_p_i	sim_ISOURCEA_i	XCOREA.p.i
sim_XCOREA_n_v	-sim_XCOREA_v+sim_XCOREA_p_v	XCOREA.n.v
sim_XCOREA_n_i	-sim_XCOREA_p_i	XCOREA.n.i
sim_XCOREA_i	sim_XCOREA_p_i	XCOREA.i
sim_ISOURCEB_i	sim_ISOURCEB_ARG	ISOURCEB.i
sim_ISOURCEB_p_v	sim_XCOREC_n_v	ISOURCEB.p.v
sim_ISOURCEB_p_i	sim_XCOREB_p_i	ISOURCEB.p.i
sim_ISOURCEB_n_v	sim_XCOREB_p_v	ISOURCEB.n.v
sim_ISOURCEB_n_i	-sim_ISOURCEB_p_i	ISOURCEB.n.i
sim_ISOURCEB_v	sim_ISOURCEB_p_v-	ISOURCEB.v
	sim_ISOURCEB_n_v	
sim_ISOURCEC_i	sim_ISOURCEC_ARG	ISOURCEC.i
sim_ISOURCEC_p_v	sim_XCOREC_n_v	ISOURCEC.p.v
sim_ISOURCEC_p_i	sim_XCOREC_p_i	ISOURCEC.p.i
sim_ISOURCEC_n_v	sim_XCOREC_p_v	ISOURCEC.n.v
sim_ISOURCEC_n_i	-sim_ISOURCEC_p_i	ISOURCEC.n.i
sim_ISOURCEC_v	sim_ISOURCEC_p_v-	ISOURCEC.v
	sim_ISOURCEC_n_v	
sim_ISOURCEA_i	sim_ISOURCEA_ARG	ISOURCEA.i
sim_ISOURCEA_p_v	sim_XCOREC_n_v	ISOURCEA.p.v
sim_ISOURCEA_p_i	sim_XCOREA_p_i	ISOURCEA.p.i
sim_ISOURCEA_n_v	sim_XCOREA_p_v	ISOURCEA.n.v
sim_ISOURCEA_n_i	-sim_ISOURCEA_p_i	ISOURCEA.n.i
sim_ISOURCEA_v	sim_ISOURCEA_p_v-	ISOURCEA.v
	sim_ISOURCEA_n_v	
sim_GROUND_p_i	-sim_XCOREB_n_i-	GROUND.p.i
	sim_XSHEALDC_p_i-	
	sim_XSHEALDC_n_i-	
	sim_ISOURCEA_p_i-	
	sim_XSHEALDA_n_i-	
	sim_XSHEALDA_p_i-	
	sim_XCOREC_n_i-sim_ISOURCEB_p_i-	
	sim_XCOREA_n_i-	
	sim_XSHEALDB_n_i-	
	sim_XSHEALDB_p_i-	
	sim ISOURCEC p i	

Приложение Ж

(обязательное)

Вычислительный алгоритм для расчёта зависимости максимальной температуры в сечении кабельной линии от радиуса нижней границы расчётной области при укладке кабелей треугольником

%% Вычислительный сценарий для расчёта зависимости максимальной температуры в сечении кабельной линии от радиуса нижней границы области расчёта

n=0; % Индекс

R=0; % Радиус нижней границы расчёта

Т1=0; % Температура в центре жилы

r=[2 2.4 2.6 2.8 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 12 14 20 25 30 40 50 60]; % Массив

значений радиуса нижней границы

m=length(r); % Определение конечного значение индекса п

for n = 1:1:m % Организация цикла по перебору значений R

```
R(n)=r(n); % Запись текущего значения радиуса нижней границы в массив R
```

%% Вычислительный сценарий полевого расчёта

flclear fem

% COMSOL version

clear vrsn

```
vrsn.name = 'COMSOL 3.5';
```

vrsn.ext = ";

```
vrsn.major = 0;
```

```
vrsn.build = 494;
```

```
vrsn.rcs = '$Name: $';
```

vrsn.date = '\$Date: 2008/09/19 16:09:48 \$';

fem.version = vrsn;

% Geometry

g1=circ2('0.0214','base','center','pos',{'-0.0559','0'},'rot','0');

g2=circ2('0.0469', 'base', 'center', 'pos', {'-0.0559', '0'}, 'rot', '0');

g3=circ2('0.0489','base','center','pos',{'-0.0559','0'},'rot','0');

g4=circ2('0.0559','base','center','pos',{'-0.0559','0'},'rot','0');

```
g5=circ2('0.0214','base','center','pos',{'0','0.09682164'},'rot','0');
g6=circ2('0.0469', 'base', 'center', 'pos', {'0', '0.09682164'}, 'rot', '0');
g7=circ2('0.0489', 'base', 'center', 'pos', {'0', '0.09682164'}, 'rot', '0');
g8=circ2('0.0559', 'base', 'center', 'pos', {'0', '0.09682164'}, 'rot', '0');
g9=circ2('0.0214', 'base', 'center', 'pos', {'0.0559', '0'}, 'rot', '0');
g10=circ2('0.0469','base','center','pos',{'0.0559','0'},'rot','0');
g11=circ2('0.0489','base','center','pos',{'0.0559','0'},'rot','0');
g12=circ2('0.0559','base','center','pos',{'0.0559','0'},'rot','0');
carr = \{curve2([-r(n),r(n)], [1.5,1.5], [1,1]), ...
 curve2([r(n),r(n),0],[1.5,-(r(n)-1.5),-(r(n)-1.5)],[1,0.7071067811865475,1]), ...
 curve2([0,-r(n),-r(n)],[-(r(n)-1.5),-(r(n)-1.5),1.5],[1,0.7071067811865475,1])};
g13=geomcoerce('solid',carr);
parr = \{point2(0,0)\};\
% Analyzed geometry
clear s
s.objs={g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13};
s.name={'C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11', ...
 'C12','CO1'};
s.tags={'g1','g2','g3','g4','g5','g6','g7','g8','g9','g10', ...
 'g11','g12','g13'};
fem.draw=struct('s',s);
fem.geom=geomcsg(fem);
% Constants
fem.const = {'gamma_Cu','58100000', ...
 'gamma_Gr','0.01', ...
 'lk', '1000', ...
 'f','50', ...
 'Lambda_Cu','400', ...
 'Lambda_Pe','0.235', ...
 'Lambda_Gr','1', ...
 'Ro_Cu','8960', ...
 'Ro_Pe','930', ...
```

'Ro_Gr','1000', ...

'cCu','384.18', ...

'cPe','2350', ...

'cGr','4200', ...

'alfa_Cu','0.0039', ...

'D','0.1118', ...

'h1','1.5', ...

'v','4', ...

'T0','10', ...

'S_g_Cu','0.0012', ...

'S_e_Cu','0.000095', ...

'r1','0.0428/2', ...

'r2','0.0938/2', ...

'r3','0.0978/2', ...

'Sg','pi*r1^2', ...

'Se','pi*(r3^2-r2^2)', ...

'gamma_g_ekv','gamma_Cu*S_g_Cu/Sg', ...

'gamma_e_ekv','gamma_Cu*S_e_Cu/Se', ...

'Ja','1055*sqrt(2)', ...

'Jb','1055*sqrt(2)*exp(-i*120*pi/180)', ...

'Jc','1055*sqrt(2)*exp(i*120*pi/180)', ...

'qe_cir','1.602E-19[C]', ...

'kB_cir','1.38E-23[J/K]', ...

'freq_cir','f[Hz]', ...

'T_cir','27.2[K]+273.15[K]', ...

'omega_cir','2*pi*freq_cir', ...

'sim_ISOURCEB_ARG','Jb', ...

'sim_ISOURCEC_ARG','Jc', ...

'sim_ISOURCEA_ARG','Ja', ...

'sim_GROUND_p_v','0'};

p=5;

if R(n) > 10

```
p=3;
else if R(n)>20
    p=5;
  end
end
% Initialize mesh
fem.mesh=meshinit(fem, ...
         'hauto',p);
% (Default values are not included)
% Application mode 1
clear appl
appl.mode.class = 'GeneralHeat';
appl.module = 'HT';
appl.shape = {'shlag(1, 'J')', 'shlag(2, 'T'')'};
appl.assignsuffix = '_htgh';
clear prop
prop.analysis='static';
appl.prop = prop;
clear bnd
bnd.type = \{'q', 'q', 'cont'\};
bnd.q0 = \{0, 0', 0\};
bnd.shape = 1;
bnd.Tinf = \{273.15+T0', 273.15+T0', 273.15\};
bnd.h = \{ 'alfaT', 0, 0 \};
appl.bnd = bnd;
clear equ
equ.sdtype = 'gls';
equ.rho = {'Ro_Gr','Ro_Pe','Ro_Cu'};
equ.shape = 2;
equ.C = \{'cGr', 'cPe', 'cCu'\};
```

```
equ.Q = 'Qav_emqa+Qmav_emqa';
  equ.name = {'default',","};
  equ.k = {'Lambda_Gr','Lambda_Pe','Lambda_Cu'};
  equ.ind = [1,2,3,2,3,2,3,2,1,3,2,3,2,3];
  appl.equ = equ;
  fem.appl\{1\} = appl;
  % Application mode 2
  clear appl
  appl.mode.class = 'PerpendicularCurrents';
  appl.module = 'ACDC';
  appl.assignsuffix = '_emqa';
  clear prop
  prop.analysis='harmonic';
  clear weakconstr
  weakconstr.value = 'off';
  weakconstr.dim = \{ lm2', lm3' \};
  prop.weakconstr = weakconstr;
  appl.prop = prop;
  clear bnd
  bnd.type = \{A0', cont'\};
  appl.bnd = bnd;
  clear equ
  equ.L = 'lk';
  equ.sigma = {'gamma_Gr',0,'gamma_e_ekv/(1+alfa_Cu*(T-
283.15))','gamma_g_ekv/(1+alfa_Cu*(T-283.15))', ...
   'gamma_e_ekv/(1+alfa_Cu*(T-283.15))','gamma_Gr','gamma_g_ekv/(1+alfa_Cu*(T-
283.15))', ...
```

26

```
'gamma_e_ekv/(1+alfa_Cu*(T-283.15))','gamma_g_ekv/(1+alfa_Cu*(T-283.15))'};
equ.epsilonr = 0;
```

```
equ.deltaV = {'Ugr',0,'UeA','UgA','UeB',0,'UgB','UeC','UgC'};
```

```
equ.ind = [1,2,3,2,4,2,5,2,6,7,2,8,2,9];
appl.equ = equ;
fem.appl\{2\} = appl;
fem.frame = { 'ref' };
fem.border = 1;
fem.outform = 'general';
clear units;
units.basesystem = 'SI';
fem.units = units;
% Coupling variable elements
clear elemcpl
% Integration coupling variables
clear elem
elem.elem = 'elcplscalar';
elem.g = \{'1'\};
\operatorname{src} = \operatorname{cell}(1,1);
clear equ
'Jz_emqa',{},{},{},{},{},{},{},{}};;
```

```
'ref',{},{},{},{},{},{},{},{}};
equ.ind = \{\{1'\}, \{2', 4', 6', 8', 9', 11', 13'\}, \{3'\}, \{5'\}, \{7'\}, \{10'\}, \dots
 {'12'},{'14'}};
src{1} = {\{\}, \{\}, equ\}};
elem.src = src;
geomdim = cell(1,1);
geomdim\{1\} = \{\};
elem.geomdim = geomdim;
elem.var = {'IgA','qgA','IgB','qgB','IgC','qgC','IeA','qeA','IeB','qeB', ...
'IeC','qeC','Igr'};
elem.global = {'1','2','3','4','5','6','7','8','9','10','11','12','13'};
elem.maxvars = \{\};
elemcpl{1} = elem;
fem.elemcpl = elemcpl;
% Global expressions
fem.globalexpr = {'UgA','sim_XCOREA_v', ...
'UgB', 'sim_XCOREB_v', ...
'UgC', 'sim_XCOREC_v', ...
'UeA', 'sim_XSHEALDA_v', ...
'UeB', 'sim_XSHEALDB_v', ...
'UeC', 'sim_XSHEALDC_v', ...
'Ugr', 'sim_XGROUND1_v', ...
ac', (x+D/2)/((x+D/2)^{2}+(y)^{2})', \dots
as', (y)/((x+D/2)^2+(y)^2)', ...
bc', (x)/((x)^2+(y-D*sqrt(3)/2)^2), ...
'bs','(y-D*sqrt(3)/2)/((x)^2+(y-D*sqrt(3)/2)^2)', ...
```

 $cc', (x-D/2)/((x-D/2)^{2}+(y)^{2})', ...$

 $cs', (y)/((x-D/2)^{2}+(y)^{2}), ...$

'a1c','(x+D/2)/((x+D/2)^2+(y-2*h1)^2)', ...

'a1s','(y-2*h1)/((x+D/2)^2+(y-2*h1)^2)', ...

'b1c','(x)/((x)^2+(y+D*sqrt(3)/2-2*h1)^2)', ...

'b1s','(y+D*sqrt(3)/2-2*h1)/((x)^2+(y+D*sqrt(3)/2-2*h1)^2)', ...

'c1c','(x-D/2)/((x-D/2)^2+(y-2*h1)^2)', ...

'c1s','(y-2*h1)/((x-D/2)^2+(y-2*h1)^2)', ...

'qx','((qgA+qeA)*ac+(qgB+qeB)*bc+(qgC+qeC)*cc-(qgA+qeA)*a1c-(qgB+qeB)*b1c-(qgC+qeC)*c1c)/(2*pi)', ...

 $\label{eq:general} $$ 'qy', '((qgA+qeA)*as+(qgB+qeB)*bs+(qgC+qeC)*cs-(qgA+qeA)*a1s-(qgB+qeB)*b1s-(qgC+qeC)*c1s)/(2*pi)', ... $$$

'q0','sqrt(qx^2+qy^2)', ...

'q','q0* $\cos(a\cos(qy/(q0+0.000001))-a\cos((y-h1)/sqrt(x^2+(y-h1)^2)))$ ', ...

'alfaT','1.163*sqrt(v)*(6+3.1*(273.15+T0-T)/v^2)', ...

'sim_XCOREC_p_v','sim_XCOREC_v+sim_XCOREC_n_v', ...

'sim_XCOREC_p_i','sim_ISOURCEC_i', ...

'sim_XCOREC_n_i','-sim_XCOREC_p_i', ...

'sim_XCOREC_i','sim_XCOREC_p_i', ...

'sim_XSHEALDC_p_v','sim_GROUND_p_v', ...

'sim_XSHEALDC_p_i','-sim_XSHEALDC_n_i', ...

'sim_XSHEALDC_n_v','-sim_XSHEALDC_v+sim_XSHEALDC_p_v', ...

'sim_XSHEALDC_n_i','-IeC', ...

'sim_XSHEALDC_i','sim_XSHEALDC_p_i', ...

'sim_XGROUND1_p_v','sim_XSHEALDC_p_v', ...

'sim_XGROUND1_p_i','-sim_XGROUND1_n_i', ...

'sim_XGROUND1_n_v','-sim_XGROUND1_v+sim_XGROUND1_p_v', ...

'sim_XGROUND1_n_i','-Igr', ...

'sim_XGROUND1_i','sim_XGROUND1_p_i', ...

'sim_XSHEALDB_p_v','sim_XSHEALDC_p_v', ...

'sim_XSHEALDB_p_i','-sim_XSHEALDB_n_i', ...

'sim_XSHEALDB_n_v','-sim_XSHEALDB_v+sim_XSHEALDB_p_v', ...

'sim_XSHEALDB_n_i','-IeB', ...

'sim_XSHEALDB_i','sim_XSHEALDB_p_i', ...

- 'sim_XCOREB_p_v','sim_XCOREB_v+sim_XCOREC_n_v', ...
- 'sim_XCOREB_p_i','sim_ISOURCEB_i', ...
- 'sim_XCOREB_n_v','-sim_XCOREB_v+sim_XCOREB_p_v', ...
- 'sim_XCOREB_n_i','-sim_XCOREB_p_i', ...
- 'sim_XCOREB_i','sim_XCOREB_p_i', ...
- 'sim_XSHEALDA_p_v','sim_XSHEALDA_v+sim_XCOREC_n_v', ...
- 'sim_XSHEALDA_p_i','-sim_XSHEALDA_n_i', ...
- 'sim_XSHEALDA_n_v','-sim_XSHEALDA_v+sim_XSHEALDA_p_v', ...
- 'sim_XSHEALDA_n_i','-IeA', ...
- 'sim_XSHEALDA_i','sim_XSHEALDA_p_i', ...
- 'sim_XCOREA_p_v','sim_XCOREA_v+sim_XCOREC_n_v', ...
- 'sim_XCOREA_p_i','sim_ISOURCEA_i', ...
- 'sim_XCOREA_n_v','-sim_XCOREA_v+sim_XCOREA_p_v', ...
- 'sim_XCOREA_n_i','-sim_XCOREA_p_i', ...
- 'sim_XCOREA_i','sim_XCOREA_p_i', ...
- 'sim_ISOURCEB_i','sim_ISOURCEB_ARG', ...
- 'sim_ISOURCEB_p_v','sim_XSHEALDC_p_v', ...
- 'sim_ISOURCEB_p_i','sim_XCOREB_p_i', ...
- 'sim_ISOURCEB_n_v','sim_XCOREB_p_v', ...
- 'sim_ISOURCEB_n_i','-sim_ISOURCEB_p_i', ...
- 'sim_ISOURCEB_v','sim_ISOURCEB_p_v-sim_ISOURCEB_n_v', ...
- 'sim_ISOURCEC_i','sim_ISOURCEC_ARG', ...
- 'sim_ISOURCEC_p_v','sim_XSHEALDC_p_v', ...
- 'sim_ISOURCEC_p_i','sim_XCOREC_p_i', ...
- 'sim_ISOURCEC_n_v','sim_XCOREC_p_v', ...
- 'sim_ISOURCEC_n_i','-sim_ISOURCEC_p_i', ...
- 'sim_ISOURCEC_v','sim_ISOURCEC_p_v-sim_ISOURCEC_n_v', ...
- 'sim_ISOURCEA_i','sim_ISOURCEA_ARG', ...
- 'sim_ISOURCEA_p_v','sim_XSHEALDC_p_v', ...
- 'sim_ISOURCEA_p_i','sim_XCOREA_p_i', ...
- 'sim_ISOURCEA_n_v','sim_XCOREA_p_v', ...
- 'sim_ISOURCEA_n_i','-sim_ISOURCEA_p_i', ...

'sim_ISOURCEA_v','sim_ISOURCEA_p_v-sim_ISOURCEA_n_v', ...

'sim_GROUND_p_i','-sim_XGROUND1_p_i-sim_ISOURCEA_p_i-

sim_XSHEALDA_p_i-sim_ISOURCEC_p_i-sim_ISOURCEB_p_i-sim_XSHEALDB_p_isim_XSHEALDC_p_i'};

% Descriptions

clear descr

descr.const=

{'sim_GROUND_p_v','GROUND.p.v','sim_ISOURCEA_ARG','ISOURCEA.ARG','sim_ISO URCEB_ARG','ISOURCEB.ARG','sim_ISOURCEC_ARG','ISOURCEC.ARG'};

descr.globalexpr=

{'sim_XSHEALDA_n_v','XSHEALDA.n.v','sim_ISOURCEB_p_i','ISOURCEB.p.i','sim_XC OREB_p_i','XCOREB.p.i','sim_ISOURCEB_n_i','ISOURCEB.n.i','sim_XSHEALDA_p_v','X SHEALDA.p.v','sim_ISOURCEB_p_v','ISOURCEB.p.v','sim_XGROUND1_p_v','XGROUN D1.p.v', 'sim XSHEALDA n i', 'XSHEALDA.n.i', 'sim XCOREB n i', 'XCOREB.n.i', 'sim XS HEALDA p i', 'XSHEALDA.p.i', 'sim ISOURCEA n i', 'ISOURCEA.n.i', 'sim XGROUND1 n v', 'XGROUND1.n.v', 'sim XCOREB p v', 'XCOREB.p.v', 'sim ISOURCEC p i', 'ISOURCE C.p.i','sim_ISOURCEC_p_v','ISOURCEC.p.v','sim_XCOREB_n_v','XCOREB.n.v','sim_ISO URCEA_p_i','ISOURCEA.p.i','sim_ISOURCEA_n_v','ISOURCEA.n.v','sim_XSHEALDB_n_ v','XSHEALDB.n.v','sim_XSHEALDB_n_i','XSHEALDB.n.i','sim_ISOURCEA_p_v','ISOUR CEA.p.v', 'sim_ISOURCEB_v', 'ISOURCEB.v', 'sim_ISOURCEC_i', 'ISOURCEC.i', 'sim_XGRO UND1_i','XGROUND1.i','sim_ISOURCEB_n_v','ISOURCEB.n.v','sim_ISOURCEC_n_v','IS OURCEC.n.v', 'sim_ISOURCEC_n_i', 'ISOURCEC.n.i', 'sim_GROUND_p_i', 'GROUND.p.i', 'si m_ISOURCEC_v','ISOURCEC.v','sim_ISOURCEB_i','ISOURCEB.i','sim_XSHEALDC_p_i', 'XSHEALDC.p.i', 'sim_XCOREB_i', 'XCOREB.i', 'sim_ISOURCEA_v', 'ISOURCEA.v', 'sim_XS HEALDB_p_i', XSHEALDB.p.i', 'sim_XCOREA_i', 'XCOREA.i', 'sim_XSHEALDC_n_v', 'XS HEALDC.n.v', 'sim_XCOREC_i', 'XCOREC.i', 'sim_XSHEALDC_p_v', 'XSHEALDC.p.v', 'sim_ ISOURCEA_i','ISOURCEA.i','sim_XSHEALDB_p_v','XSHEALDB.p.v','sim_XSHEALDC_n _i','XSHEALDC.n.i','sim_XGROUND1_n_i','XGROUND1.n.i','sim_XCOREA_p_i','XCORE A.p.i','sim_XSHEALDB_i','XSHEALDB.i','sim_XCOREA_n_v','XCOREA.n.v','sim_XCORE C_p_i','XCOREC.p.i','sim_XSHEALDA_i','XSHEALDA.i','sim_XCOREC_n_i','XCOREC.n.i' 'sim_XCOREA_p_v','XCOREA.p.v','sim_XSHEALDC_i','XSHEALDC.i','sim_XCOREA_n_

i','XCOREA.n.i','sim_XCOREC_p_v','XCOREC.p.v','sim_XGROUND1_p_i','XGROUND1.p. i'};

```
descr.ode= {'sim_XGROUND1_v','XGROUND1.v 0','sim_XCOREC_n_v','XCOREC.n.v
```

```
0','sim_XCOREA_v','XCOREA.v 0','sim_XSHEALDC_v','XSHEALDC.v
```

```
0','sim_XCOREB_v','XCOREB.v 0','sim_XSHEALDB_v','XSHEALDB.v
```

```
0','sim_XCOREC_v','XCOREC.v 0','sim_XSHEALDA_v','XSHEALDA.v 0'};
```

```
fem.descr = descr;
```

% ODE Settings

clear ode

```
ode.dim={'sim_XCOREC_n_v','sim_XCOREC_v','sim_XSHEALDC_v','sim_XGROUND1_v
```

```
','sim_XSHEALDB_v','sim_XCOREB_v','sim_XSHEALDA_v','sim_XCOREA_v'};
```

```
ode.f={'-sim_XSHEALDC_v+sim_XSHEALDC_p_v-
```

```
sim_XCOREC_n_v','sim_XCOREC_p_i-IgC','-IeC-Igr-IeB-
```

```
IeA+sim_XCOREC_n_i+sim_XCOREA_n_i+sim_XCOREB_n_i',-
```

```
sim_XGROUND1_v+sim_XGROUND1_p_v-sim_XCOREC_n_v',-
```

```
sim_XSHEALDB_v+sim_XSHEALDB_p_v-sim_XCOREC_n_v','sim_XCOREB_p_i-
```

```
IgB','sim_XSHEALDA_v+sim_XCOREC_n_v-sim_XSHEALDC_p_v','sim_XCOREA_p_i-
```

IgA'};

```
ode.init={'0','0','0','0','0','0','0','0'};
```

```
ode.dinit={'0','0','0','0','0','0','0','0'};
```

clear units;

```
units.basesystem = 'SI';
```

ode.units = units;

fem.ode=ode;

% Multiphysics

```
fem=multiphysics(fem);
```

% Extend mesh

```
fem.xmesh=meshextend(fem);
```

% Solve problem

```
fem.sol=femstatic(fem, ...
```

'solcomp',{'sim_XGROUND1_v','T','sim_XCOREA_v','sim_XCOREC_n_v','sim_XSHEALD
C_v','sim_XCOREB_v','sim_XSHEALDB_v','sim_XCOREC_v','sim_XSHEALDA_v','Az'},
...
'outcomp' ('sim_XGROUND1_v','T','sim_XCOREA_v','sim_XCOREC_n_v','sim_XSHEALD

'outcomp',{'sim_XGROUND1_v','T','sim_XCOREA_v','sim_XCOREC_n_v','sim_XSHEALD C_v','sim_XCOREB_v','sim_XSHEALDB_v','sim_XCOREC_v','sim_XSHEALDA_v','Az'},

'blocksize', 'auto');

% Save current fem structure for restart purposes

fem0=fem;

% Plot solution

postplot(fem, ...

'contdata',{'T','cont','internal','unit','degC'}, ...

'contlevels',40, ...

'contlabel','off', ...

'contmap','jet(1024)', ...

'contfill','on', ...

'title', 'Contour: Temperature [degC]', ...

'axis',[-3.406833701067766,3.406833701067766,-

```
1.788532423208191,1.7885324232081914]);
```

```
% Запись текущего значения темперетуры в центре жилы в массив Т1
```

```
T1(n)=postint(fem,'T', ...
```

```
'unit','degC', ...
'recover','off', ...
```

'dl',[17], ...

'edim',0);

end

figure

plot(R, T1); % Построение графика

Приложение И

(обязательное)

Вычислительный алгоритм для расчёта зависимости температуры жилы средней фазы от

радиуса нижней границы расчётной области расчёта при укладке кабелей в плоскости

%% Вычислительный сценарий для расчёта зависимости максимальной температуры в

сечении кабельной линии от радиуса нижней границы области расчёта

n=0; % Индекс

R=0; % Радиус нижней границы расчёта

Т1=0; % Температура в центре жилы

```
r=[2 2.4 2.6 2.8 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 12 14 20 25 30 40 50 60]; % Массив
```

значений радиуса нижней границы

m=length(r); % Определение конечного значение индекса п

for n = 1:1:m % Организация цикла по перебору значений R

R(n)=r(n); % Запись текущего значения радиуса нижней границы в массив R

%% Далее идёт вычислительный сценарий полевого расчёта

flclear fem

% COMSOL version

clear vrsn

vrsn.name = 'COMSOL 3.5';

vrsn.ext = ";

vrsn.major = 0;

vrsn.build = 494;

vrsn.rcs = '\$Name: \$';

vrsn.date = '\$Date: 2008/09/19 16:09:48 \$';

fem.version = vrsn;

% Geometry

g1=circ2('0.0214','base','center','pos',{'-0.1118','0'},'rot','0');

g2=circ2('0.0469','base','center','pos',{'-0.1118','0'},'rot','0');

g3=circ2('0.0489', 'base', 'center', 'pos', {'-0.1118', '0'}, 'rot', '0');

g4=circ2('0.0559','base','center','pos',{'-0.1118','0'},'rot','0');

g5=circ2('0.0214','base','center','pos',{'0','0'},'rot','0');

```
g7=circ2('0.0489','base','center','pos',{'0','0'},'rot','0');
```

```
g8=circ2('0.0559','base','center','pos',{'0','0'},'rot','0');
```

```
g9=circ2('0.0214','base','center','pos',{'0.1118','0'},'rot','0');
```

```
g10=circ2('0.0469','base','center','pos',{'0.1118','0'},'rot','0');
```

```
g11=circ2('0.0489','base','center','pos',{'0.1118','0'},'rot','0');
```

```
g12=circ2('0.0559','base','center','pos',{'0.1118','0'},'rot','0');
```

```
carr={curve2([-r(n),r(n)],[1.5,1.5],[1,1]), ...
```

```
curve2([r(n),r(n),0],[1.5,-(r(n)-1.5),-(r(n)-1.5)],[1,0.7071067811865475,1]), ...
```

```
curve2([0,-r(n),-r(n)],[-(r(n)-1.5),-(r(n)-1.5),1.5],[1,0.7071067811865475,1])};
```

```
g13=geomcoerce('solid',carr);
```

```
% Analyzed geometry
```

clear s

```
s.objs={g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13};
```

```
s.name={'C1','C2','C3','C4','C5','C6','C7','C8','C9','C10','C11', ...
```

```
'C12','CO1'};
```

```
s.tags={'g1','g2','g3','g4','g5','g6','g7','g8','g9','g10', ...
```

```
'g11','g12','g13'};
```

```
fem.draw=struct('s',s);
```

```
fem.geom=geomcsg(fem);
```

% Constants

```
fem.const = {'gamma_Cu','58100000', ...
```

```
'gamma_Gr','0.01', ...
```

```
'lk','1000', ...
```

'f','50', ...

```
'Lambda_Cu','400', ...
```

```
'Lambda_Pe','0.235', ...
```

```
'Lambda_Gr','1', ...
```

```
'Ro_Cu','8960', ...
```

'Ro_Pe','930', ...

```
'Ro_Gr','1000', ...
```

```
'cCu','384.18', ...
```

'cPe','2350', ...

'cGr','4200', ...

'alfa_Cu','0.0039', ...

'D','0.1118', ...

'h1','1.5', ...

'v','4', ...

'T0','10', ...

'S_g_Cu','0.0012', ...

'S_e_Cu','0.000095', ...

'r1','0.0428/2', ...

'r2','0.0938/2', ...

'r3','0.0978/2', ...

'Sg','pi*r1^2', ...

'Se','pi*(r3^2-r2^2)', ...

'gamma_g_ekv','gamma_Cu*S_g_Cu/Sg', ...

'gamma_e_ekv','gamma_Cu*S_e_Cu/Se', ...

'Ja','1055*sqrt(2)', ...

'Jb','1055*sqrt(2)*exp(-i*120*pi/180)', ...

'Jc','1055*sqrt(2)*exp(i*120*pi/180)', ...

'qe_cir','1.602E-19[C]', ...

'kB_cir','1.38E-23[J/K]', ...

'freq_cir','f[Hz]', ...

'T_cir','27.2[K]+273.15[K]', ...

'omega_cir','2*pi*freq_cir', ...

'sim_ISOURCEB_ARG','Jb', ...

'sim_ISOURCEC_ARG','Jc', ...

'sim_ISOURCEA_ARG','Ja', ...

'sim_GROUND_p_v','0'};

p=5;

if R(n) > 10

p=3;

else if R(n)>20
```
p=5;
  end
end
% Initialize mesh
fem.mesh=meshinit(fem, ...
         'hauto',p);
% (Default values are not included)
% Application mode 1
clear appl
appl.mode.class = 'GeneralHeat';
appl.module = 'HT';
appl.shape = { 'shlag(1, 'J'')', 'shlag(2, 'T'')' };
appl.assignsuffix = '_htgh';
clear prop
prop.analysis='static';
appl.prop = prop;
clear bnd
bnd.type = \{'q', 'q', 'cont'\};
bnd.q0 = \{0, -q', 0\};
bnd.shape = 1;
bnd.Tinf = {'273.15+T0','273.15+T0',273.15};
bnd.h = {'alfaT',0,0};
appl.bnd = bnd;
clear equ
equ.sdtype = 'gls';
equ.rho = {'Ro_Gr','Ro_Pe','Ro_Cu'};
equ.shape = 2;
equ.C = \{'cGr', 'cPe', 'cCu'\};
equ.Q = 'Qav_emqa+Qmav_emqa';
equ.name = {'default',","};
```

```
equ.k = {'Lambda_Gr','Lambda_Pe','Lambda_Cu'};
  equ.ind = [1,2,3,2,3,2,3,2,3,2,3,2,3];
  appl.equ = equ;
  fem.appl\{1\} = appl;
  % Application mode 2
  clear appl
  appl.mode.class = 'PerpendicularCurrents';
  appl.module = 'ACDC';
  appl.sshape = 2;
  appl.assignsuffix = '_emqa';
  clear prop
  prop.analysis='harmonic';
  clear weakconstr
  weakconstr.value = 'off';
  weakconstr.dim = \{ lm2', lm3' \};
  prop.weakconstr = weakconstr;
  appl.prop = prop;
  clear bnd
  bnd.type = \{ A0', cont' \};
  appl.bnd = bnd;
  clear equ
  equ.L = 'lk';
  equ.sigma = {'gamma_Gr',0,'gamma_e_ekv/(1+alfa_Cu*(T-
283.15))','gamma_g_ekv/(1+alfa_Cu*(T-283.15))', ...
   'gamma_e_ekv/(1+alfa_Cu*(T-283.15))','gamma_g_ekv/(1+alfa_Cu*(T-283.15))', ...
   'gamma_e_ekv/(1+alfa_Cu*(T-283.15))','gamma_g_ekv/(1+alfa_Cu*(T-283.15))'};
  equ.epsilonr = 0;
  equ.deltaV = {'Ugr',0,'UeA','UgA','UeB','UgB','UeC','UgC'};
  equ.ind = [1,2,3,2,4,2,5,2,6,2,7,2,8];
  appl.equ = equ;
```

38

fem.appl{2} = appl;

fem.frame = {'ref'};

fem.border = 1;

fem.outform = 'general';

clear units;

units.basesystem = 'SI';

fem.units = units;

% Coupling variable elements

clear elemcpl

% Integration coupling variables

clear elem

elem.elem = 'elcplscalar';

elem.g = $\{'1'\};$

```
\operatorname{src} = \operatorname{cell}(1,1);
```

clear equ

```
'Jz_emqa',{},{},{},{},{},{},{},{}};;
```

```
'ref',{},{},{},{},{},{},{},{}};
equ.ind = {{'1'}, {'2', '4', '6', '8', '10', '12'}, {'3'}, {'5'}, {'7'}, {'9'}, {'11'}, ...
 {'13'}};
src{1} = {\{\}, \{\}, equ\}};
elem.src = src;
geomdim = cell(1,1);
geomdim\{1\} = \{\};
elem.geomdim = geomdim;
elem.var = {'IgA','qgA','IgB','qgB','IgC','qgC','IeA','qeA','IeB','qeB', ...
 'IeC','qeC','Igr'};
elem.global = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\};
elem.maxvars = { };
elemcpl{1} = elem;
fem.elemcpl = elemcpl;
% Global expressions
fem.globalexpr = {'UgA','sim_XCOREA_v', ...
 'UgB', 'sim_XCOREB_v', ...
 'UgC', 'sim_XCOREC_v', ...
 'UeA', 'sim_XSHEALDA_v', ...
 'UeB', 'sim_XSHEALDB_v', ...
 'UeC', 'sim_XSHEALDC_v', ...
 'Ugr', 'sim_XGROUND1_v', ...
 ac', (x+D)/((x+D)^{2}+(y)^{2}), ...
 as', (y)/((x+D)^{2}+(y)^{2})', ...
 bc', (x)/((x)^2+y^2)', ...
 'bs','(y)/((x)^2+(y)^2)', ...
 'cc','(x-D)/((x-D)^2+(y)^2)', ...
 cs', (y)/((x-D)^{2}+(y)^{2})', ...
 'a1c','(x+D)/((x+D)^2+(y-2*h1)^2)', ...
 'a1s','(y-2*h1)/((x+D)^2+(y-2*h1)^2)', ...
 b1c', (x)/((x)^2+(y-2*h1)^2)', \dots
```

'b1s','(y-2*h1)/((x)^2+(y-2*h1)^2)', ...

'c1c','(x-D)/((x-D)^2+(y-2*h1)^2)', ...

'c1s','(y-2*h1)/((x-D)^2+(y-2*h1)^2)', ...

'qx','((qgA+qeA)*ac+(qgB+qeB)*bc+(qgC+qeC)*cc-(qgA+qeA)*a1c-(qgB+qeB)*b1c-(qgC+qeC)*c1c)/(2*pi)', ...

 $\label{eq:general} $$ 'qy', '((qgA+qeA)*as+(qgB+qeB)*bs+(qgC+qeC)*cs-(qgA+qeA)*a1s-(qgB+qeB)*b1s-(qgC+qeC)*c1s)/(2*pi)', ... $$$

'q0','sqrt(qx^2+qy^2)', ...

'q', 'q0* $\cos(a\cos(qy/(q0+0.000001))-a\cos((y-h1)/sqrt(x^2+(y-h1)^2)))$ ', ...

'alfaT','1.163*sqrt(v)*(6+3.1*(273.15+T0-T)/v^2)', ...

'sim_XCOREC_p_v','sim_XCOREC_v+sim_XCOREC_n_v', ...

'sim_XCOREC_p_i','sim_ISOURCEC_i', ...

'sim_XCOREC_n_i','-sim_XCOREC_p_i', ...

'sim_XCOREC_i','sim_XCOREC_p_i', ...

'sim_XSHEALDC_p_v','sim_GROUND_p_v', ...

'sim_XSHEALDC_p_i','-sim_XSHEALDC_n_i', ...

'sim_XSHEALDC_n_v','-sim_XSHEALDC_v+sim_XSHEALDC_p_v', ...

'sim_XSHEALDC_n_i','-IeC', ...

'sim_XSHEALDC_i','sim_XSHEALDC_p_i', ...

'sim_XGROUND1_p_v','sim_XSHEALDC_p_v', ...

'sim_XGROUND1_p_i','-sim_XGROUND1_n_i', ...

'sim_XGROUND1_n_v','-sim_XGROUND1_v+sim_XGROUND1_p_v', ...

'sim_XGROUND1_n_i','-Igr', ...

'sim_XGROUND1_i','sim_XGROUND1_p_i', ...

'sim_XSHEALDB_p_v','sim_XSHEALDC_p_v', ...

'sim_XSHEALDB_p_i','-sim_XSHEALDB_n_i', ...

'sim_XSHEALDB_n_v','-sim_XSHEALDB_v+sim_XSHEALDB_p_v', ...

'sim_XSHEALDB_n_i','-IeB', ...

'sim_XSHEALDB_i','sim_XSHEALDB_p_i', ...

'sim_XCOREB_p_v','sim_XCOREB_v+sim_XCOREC_n_v', ...

'sim_XCOREB_p_i','sim_ISOURCEB_i', ...

'sim_XCOREB_n_v','-sim_XCOREB_v+sim_XCOREB_p_v', ...

- 'sim_XCOREB_n_i','-sim_XCOREB_p_i', ...
- 'sim_XCOREB_i','sim_XCOREB_p_i', ...
- 'sim_XSHEALDA_p_v','sim_XSHEALDA_v+sim_XCOREC_n_v', ...
- 'sim_XSHEALDA_p_i','-sim_XSHEALDA_n_i', ...
- 'sim_XSHEALDA_n_v','-sim_XSHEALDA_v+sim_XSHEALDA_p_v', ...
- 'sim_XSHEALDA_n_i','-IeA', ...
- 'sim_XSHEALDA_i','sim_XSHEALDA_p_i', ...
- 'sim_XCOREA_p_v','sim_XCOREA_v+sim_XCOREC_n_v', ...
- 'sim_XCOREA_p_i','sim_ISOURCEA_i', ...
- 'sim_XCOREA_n_v','-sim_XCOREA_v+sim_XCOREA_p_v', ...
- 'sim_XCOREA_n_i','-sim_XCOREA_p_i', ...
- 'sim_XCOREA_i','sim_XCOREA_p_i', ...
- 'sim_ISOURCEB_i','sim_ISOURCEB_ARG', ...
- 'sim_ISOURCEB_p_v','sim_XSHEALDC_p_v', ...
- 'sim_ISOURCEB_p_i','sim_XCOREB_p_i', ...
- 'sim_ISOURCEB_n_v','sim_XCOREB_p_v', ...
- 'sim_ISOURCEB_n_i','-sim_ISOURCEB_p_i', ...
- 'sim_ISOURCEB_v','sim_ISOURCEB_p_v-sim_ISOURCEB_n_v', ...
- 'sim_ISOURCEC_i','sim_ISOURCEC_ARG', ...
- 'sim_ISOURCEC_p_v','sim_XSHEALDC_p_v', ...
- 's im_ISOURCEC_p_i','sim_XCOREC_p_i', ...
- 'sim_ISOURCEC_n_v','sim_XCOREC_p_v', ...
- 'sim_ISOURCEC_n_i','-sim_ISOURCEC_p_i', ...
- 'sim_ISOURCEC_v','sim_ISOURCEC_p_v-sim_ISOURCEC_n_v', ...
- 'sim_ISOURCEA_i','sim_ISOURCEA_ARG', ...
- 'sim_ISOURCEA_p_v','sim_XSHEALDC_p_v', ...
- 'sim_ISOURCEA_p_i','sim_XCOREA_p_i', ...
- 's im_ISOURCEA_n_v','sim_XCOREA_p_v', ...
- 'sim_ISOURCEA_n_i','-sim_ISOURCEA_p_i', ...
- 'sim_ISOURCEA_v','sim_ISOURCEA_p_v-sim_ISOURCEA_n_v', ...

'sim_GROUND_p_i','-sim_XGROUND1_p_i-sim_XSHEALDC_p_isim_XSHEALDA_p_i-sim_XSHEALDB_p_i-sim_ISOURCEA_p_i-sim_ISOURCEB_p_i-

sim_ISOURCEC_p_i'};

% Descriptions

clear descr

descr.const=

{'sim_GROUND_p_v','GROUND.p.v','sim_ISOURCEA_ARG','ISOURCEA.ARG','sim_ISO URCEC_ARG','ISOURCEC.ARG','sim_ISOURCEB_ARG','ISOURCEB.ARG'};

descr.globalexpr=

{'sim_XSHEALDA_n_v','XSHEALDA.n.v','sim_ISOURCEB_p_i','ISOURCEB.p.i','sim_XC OREB_p_i','XCOREB.p.i','sim_ISOURCEB_n_i','ISOURCEB.n.i','sim_XSHEALDA_p_v','X SHEALDA.p.v','sim_ISOURCEB_p_v','ISOURCEB.p.v','sim_XGROUND1_p_v','XGROUN D1.p.v','sim_XSHEALDA_n_i','XSHEALDA.n.i','sim_XCOREB_n_i','XCOREB.n.i','sim_XS HEALDA p i', 'XSHEALDA.p.i', 'sim ISOURCEA n i', 'ISOURCEA.n.i', 'sim XGROUND1 n v','XGROUND1.n.v','sim ISOURCEC p i','ISOURCEC.p.i','sim XCOREB p v','XCORE B.p.v','sim ISOURCEC p v','ISOURCEC.p.v','sim XCOREB n v','XCOREB.n.v','sim ISO URCEA_n_v','ISOURCEA.n.v','sim_ISOURCEA_p_i','ISOURCEA.p.i','sim_XSHEALDB_n_ v','XSHEALDB.n.v','sim_XSHEALDB_n_i','XSHEALDB.n.i','sim_ISOURCEA_p_v','ISOUR CEA.p.v','sim_ISOURCEC_i','ISOURCEC.i','sim_ISOURCEB_v','ISOURCEB.v','sim_XGRO UND1_i','XGROUND1.i','sim_ISOURCEB_n_v','ISOURCEB.n.v','sim_ISOURCEC_n_v','IS OURCEC.n.v', 'sim_ISOURCEC_n_i', 'ISOURCEC.n.i', 'sim_GROUND_p_i', 'GROUND.p.i', 'si m_ISOURCEC_v','ISOURCEC.v','sim_ISOURCEB_i','ISOURCEB.i','sim_XSHEALDC_p_i', 'XSHEALDC.p.i', 'sim_XCOREB_i', 'XCOREB.i', 'sim_ISOURCEA_v', 'ISOURCEA.v', 'sim_XS HEALDB_p_i', XSHEALDB.p.i', 'sim_XCOREA_i', 'XCOREA.i', 'sim_XSHEALDC_n_v', 'XS HEALDC.n.v','sim_XCOREC_i','XCOREC.i','sim_XSHEALDC_p_v','XSHEALDC.p.v','sim_ ISOURCEA_i','ISOURCEA.i','sim_XSHEALDB_p_v','XSHEALDB.p.v','sim_XSHEALDC_n _i','XSHEALDC.n.i','sim_XGROUND1_n_i','XGROUND1.n.i','sim_XCOREA_p_i','XCORE A.p.i','sim_XSHEALDB_i','XSHEALDB.i','sim_XCOREA_n_v','XCOREA.n.v','sim_XCORE C_p_i','XCOREC.p.i','sim_XSHEALDA_i','XSHEALDA.i','sim_XCOREC_n_i','XCOREC.n.i' 'sim_XCOREA_p_v','XCOREA.p.v','sim_XCOREA_n_i','XCOREA.n.i','sim_XSHEALDC_i' ,'XSHEALDC.i','sim_XGROUND1_p_i','XGROUND1.p.i','sim_XCOREC_p_v','XCOREC.p. **v**'};

desc r.ode= {'sim_XGROUND1_v','XGROUND1.v 0','sim_XCOREA_v','XCOREA.v

0','sim_XCOREC_n_v','XCOREC.n.v 0','sim_XSHEALDC_v','XSHEALDC.v

0','sim_XCOREB_v','XCOREB.v 0','sim_XSHEALDB_v','XSHEALDB.v

0','sim_XCOREC_v','XCOREC.v 0','sim_XSHEALDA_v','XSHEALDA.v 0'};

fem.descr = descr;

% ODE Settings

clear ode

ode.dim={'sim_XCOREC_n_v','sim_XCOREC_v','sim_XSHEALDC_v','sim_XGROUND1_v

','sim_XSHEALDB_v','sim_XCOREB_v','sim_XSHEALDA_v','sim_XCOREA_v'};

```
ode. f={'-sim_XSHEALDC_v+sim_XSHEALDC_p_v-
```

sim_XCOREC_n_v','sim_XCOREC_p_i-IgC','-IeC-Igr-IeB-

IeA+sim_XCOREB_n_i+sim_XCOREA_n_i+sim_XCOREC_n_i','-

sim_XGROUND1_v+sim_XGROUND1_p_v-sim_XCOREC_n_v',-

```
sim_XSHEALDB_v+sim_XSHEALDB_p_v-sim_XCOREC_n_v','sim_XCOREB_p_i-
```

IgB','sim_XSHEALDA_v+sim_XCOREC_n_v-sim_XSHEALDC_p_v','sim_XCOREA_p_i-IgA'};

```
ode.init={'0','0','0','0','0','0','0','0'};
```

```
ode.dinit={'0','0','0','0','0','0','0','0'};
```

clear units;

```
units.basesystem = 'SI';
```

ode.units = units;

fem.ode=ode;

% Multiphysics

fem=multiphysics(fem);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femstatic(fem, ...

'solcomp',{'sim_XGROUND1_v','T','sim_XCOREC_n_v','sim_XCOREA_v','sim_XSHEALD C_v','sim_XCOREB_v','sim_XSHEALDB_v','sim_XCOREC_v','sim_XSHEALDA_v','Az'},

•••

'outcomp',{'sim_XGROUND1_v','T','sim_XCOREC_n_v','sim_XCOREA_v','sim_XSHEALD C_v','sim_XCOREB_v','sim_XSHEALDB_v','sim_XCOREC_v','sim_XSHEALDA_v','Az'},

•••

'blocksize', 'auto');

% Save current fem structure for restart purposes

fem0=fem;

% Plot solution

postplot(fem, ...

'tridata',{'T','cont','internal','unit','degC'}, ...

'trimap','jet(1024)', ...

'title', 'Surface: Temperature [degC]', ...

'axis',[-0.21784184372858126,0.21784184372858126,-

```
0.11224297464016442,0.11224297464016464]);
```

% Запись текущего значения темперетуры в центре жилы в массив Т1

T1(n)=postint(fem,'T', ...

'unit','degC', ... 'recover','off', ... 'dl',[30], ... 'edim',0);

end

plot(R, T1); % Построение графика

Приложение К

(обязательное)

Текст в окне SPICE Circuit Edditor программы COMSOL Multiphysics для компьютерной модели кабельной линии с транспозицией экранов

IsourceA 0 1 1 IsourceB 0 2 1 IsourceC 0 3 1 XCoreA1 1 4 CoreA1 .SUBCKT CoreA1 IgA1 UgA1 COMSOL: * .ENDS XCoreB1 2 5 CoreB1 .SUBCKT CoreB1 IgB1 UgB1 COMSOL: * .ENDS XCoreC1 3 6 CoreC1 .SUBCKT CoreC1 IgC1 UgC1 COMSOL: * .ENDS XCoreA2 4 7 CoreA2 .SUBCKT CoreA2 IgA2 UgA2 COMSOL: * .ENDS XCoreB2 5 8 CoreB2 .SUBCKT CoreB2 IgB2 UgB2 COMSOL: * .ENDS XCoreC2 69 CoreC2 .SUBCKT CoreC2 IgC2 UgC2 COMSOL: * .ENDS XCoreA3 7 10 CoreA3 .SUBCKT CoreA3 IgA3 UgA3 COMSOL: * .ENDS XCoreB3 8 10 CoreB3 .SUBCKT CoreB3 IgB3 UgB3 COMSOL: * .ENDS

XCoreC3 9 10 CoreC3 .SUBCKT CoreC3 IgC3 UgC3 COMSOL: * .ENDS XShealdA1 0 11 ShealdA1 .SUBCKT ShealdA1 IeA1 UeA1 COMSOL: * .ENDS XShealdB1 0 12 ShealdB1 .SUBCKT ShealdB1 IeB1 UeB1 COMSOL: * .ENDS XShealdC1 0 13 ShealdC1 .SUBCKT ShealdC1 IeC1 UeC1 COMSOL: * .ENDS XShealdA2 13 14 ShealdA2 .SUBCKT ShealdA2 IeA2 UeA2 COMSOL: * .ENDS XShealdB2 11 15 ShealdB2 .SUBCKT ShealdB2 IeB2 UeB2 COMSOL: * .ENDS XShealdC2 12 16 ShealdC2 .SUBCKT ShealdC2 IeC2 UeC2 COMSOL: * .ENDS XShealdA3 16 10 ShealdA3 .SUBCKT ShealdA3 IeA3 UeA3 COMSOL: * .ENDS XShealdB3 14 10 ShealdB3 .SUBCKT ShealdB3 IeB3 UeB3 COMSOL: * .ENDS XShealdC3 15 10 ShealdC3 .SUBCKT ShealdC3 IeC3 UeC3 COMSOL: * .ENDS XGround1 0 17 Ground1 .SUBCKT Ground1 Igr1 Ugr1 COMSOL: *

.ENDS

XGround2 17 18 Ground2

.SUBCKT Ground2 Igr2 Ugr2 COMSOL: *

.ENDS

XGround3 18 10 Ground3

.SUBCKT Ground3 Igr3 Ugr3 COMSOL: *

.ENDS

Приложение Л

(обязательное)

Математический алгоритм для расчёта температур жил однофазных кабелей в одном сечении КЛ в режиме реального времени, написанный в программе MATLAB

%% 1. ВВОД ИСХОДНЫХ ДАННЫХ

f=50; %Частота тока, Гц

%Параметры жилы

r1=0.0428/2;% Радиус жилы, м

gammaCu=58100000; %Удельная электрическая проводимость, См/м

alfaCu=0.0039; %Температурный коэффициент сопротивления меди, 1/К

сси=384.18; %Удельная теплоемкость меди, Дж/(кг*К)

Plcu=8960; % Плотность меди, кг/м^3

Sg_Cu=0.0012; %Площадь сечения меди в жиле (по каталогу), мм^2

k_sg=1; %Коэффициент влияния конструкции жилы на поверхностный эффект

k_pg=1; %Коэффициент влияния конструкции жилы на эффект близости

%Параметры изоляции

r2=0.0938/2;% Наружный радиус внутренней изоляции, м

lymda_pe=0.235; %Удельная теплопроводность полиэтилена, Вт/(м*К)

Plpe=930; % Плотность полиэтилена, кг/м^3

сре=2350; %Удельная теплоемкость полиэтилена, Дж/(кг*К)

h=864; T1=180*86400; k=1; %Установка шага по времени, предела по времени и индекса

<u>%% 2. РАСЧЁТ ПАРАМЕТРОВ МОДЕЛИ</u>

% Расчёт активного сопротивления жилы постоянному току с учётом

% коэффициента заполнения

Sg=pi*r1^2; %Общая площадь сечения жилы, мм^2

gamma_g_ekv=gammaCu*Sg_Cu/Sg;%Эквивалентная электрическая проводимость жилы при температуре 20 гр. Цельсия, См/м

Rg_=1/(gamma_g_ekv*Sg); %Сопротивление жилы постоянному току при температуре 20 гр. Цельсия, Ом/м

% Расчёт параметров тепловой схемы замещения

r12=sqrt(r1*r2); %Промежуточный радиус изоляции, м

Rti=log(r12/r1)/(2*pi*lymda_pe); %Тепловое сопротивление 1 из 2 слоёв изоляции,

Вт/(м*К)

Cg=ccu*Plcu*pi*r1^2; %Теплоёмкость жилы, Дж/(м*К)

Ci1=cpe*Plpe*pi*(r12^2-r1^2); %Тепловая ёмкость первого слоя изоляции, Дж/(м*К)

Ci2=cpe*Plpe*pi*(r2^2-r12^2); %Тепловая ёмкость второго слоя изоляции, Дж/(м*К)

pwi=1/(2*log(r12/r1))-1/((r12/r1)^2-1); %Коэффициент Ван-Вормера для изоляции, отн. ед.

C1=Cg+pwi*Ci1; %Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

C2=(1-pwi)*Ci1+pwi*Ci2; %Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

%% 3. СЧИТЫВАНИЕ ПАРАМЕТРОВ РЕЖИМА

IgA=pdIgA.IgA(k)./sqrt(2); IgB=pdIgB.IgB(k)./sqrt(2); IgC=pdIgC.IgC(k)./sqrt(2);%Модули действующих значений токов в жилах

TsA=pdTA.TAe(k); TsB=pdTB.TBe(k); TsC=pdTC.TCe(k);%Начальные значения температур экранов кабелей

TgA1=0; TgB1=0; TgC1=0; tt=0; tt(k)=0; PgA1=0; PgB1=0;

РgС1=0; %Обнуление массивов

<u>%% 4. РАСЧЕТ ТЕПЛОВЫДЕЛЕНИЯ И НАЧАЛЬНЫХ УСЛОВИЙ</u>

PgA0=0; PgB0=0; PgC0=0; %Начальные тепловыделения в жилах (0-)

TgA=TsA+PgA0*2*Rti; TgB=TsB+PgB0*2*Rti; TgC=TsC+PgC0*2*Rti; %Температурs жил в начальный момент времени (0-)

TgA1(k)=TgA; TgB1(k)=TgB; TgC1(k)=TgC; %Запись с общий массив данных Uc2A=TsA+PgA0*Rti; Uc2B=TsB+PgB0*Rti; Uc2C=TsC+PgC0*Rti; %Потенциал на

второй ёмкости в исходной схеме замещения, К

%Расчёт активных сопротивлений переменному току с учётом температурного коэффициента сопротивления

x_sgA=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgA-20))));

x_sgB=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgB-20))));

x_sgC=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgC-20))));

 $x_pgA = sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgA-20))));$

 $x_pgB = sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgB-20))));$

 $x_pgC = sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgC-20))));$

y_sgA=(x_sgA^4)/(192+0.8*x_sgA^4); y_sgB=(x_sgB^4)/(192+0.8*x_sgB^4);

 $y_sgC = (x_sgC^4)/(192+0.8*x_sgC^4);$

 $y_pgA = (x_pgA^4)/(192+0.8*x_pgA^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+1.18/((x_pgA^4)/(192+0.8*x_pgA^4)+0.27));$

 $y_pgB = (x_pgB^4)/(192+0.8*x_pgB^4)*((2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(192+0.8*x_pgB^4)+0.27));$

 $y_pgC = (x_pgC^4)/(192+0.8*x_pgC^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+1.18/((x_pgC^4)/(192+0.8*x_pgC^4)+0.27));$

RgA=Rg_*(1+alfaCu*(TgA-20))*(1+y_sgA+y_pgA);%Активное сопротивление жилы переменному току, Ом/м

RgB=Rg_*(1+alfaCu*(TgB-20))*(1+y_sgB+y_pgB);%Активное сопротивление жилы переменному току, Ом/м

RgC=Rg_*(1+alfaCu*(TgC-20))*(1+y_sgC+y_pgC);%Активное сопротивление жилы переменному току, Ом/м

% Расчёт тепловыделений и начальных токов в ёмкостях

PgA=IgA^2*RgA; PgB=IgB^2*RgB; PgC=IgC^2*RgC;

ic1A=PgA; ic1B=PgB; ic1C=PgB;

ic2A=0; ic2B=0; ic2C=0;

% Расчёт сопротивлений дискретной модели

Rc1=h/(2*C1);%для ёмкости 1

Rc2=h/(2*C2);%для ёмкости 2

% ЦИКЛ РАСЧЁТА МОДЕЛИ

for t=h:h:T1

k=k+1; tt(k)=t;

%% 5. СЧИТЫВАНИЕ ПАРАМЕТРОВ РЕЖИМА

IgA=pdIgA.IgA(k)./sqrt(2); IgB=pdIgB.IgB(k)./sqrt(2);

IgC=pdIgC.IgC(k)./sqrt(2);%Модули действующих значений токов в жилах

TsA=pdTA.TAe(k); TsB=pdTB.TBe(k); TsC=pdTC.TCe(k);%Начальные значения температур экранов кабелей

<u>%% 6. РАСЧЁТ ТЕПЛОВЫДЕЛЕНИЙ С УЧЁТОМ ТЕМПЕРАТУРНОГО</u> <u>КОЭФФИЦИЕНТА</u>

<u>СОПРОТИВЛЕНИЯ</u>

- $x_sgA = sqrt(8*pi*f*k_sg*(10^{-7})/(Rg_*(1+alfaCu*(TgA-20))));$
- x_sgB=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgB-20))));
- x_sgC=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgC-20))));
- $x_pgA = sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgA-20))));$
- x_pgB=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgB-20))));
- $x_pgC = sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgC-20))));$
- y_sgA=(x_sgA^4)/(192+0.8*x_sgA^4);
- $y_sgB=(x_sgB^4)/(192+0.8*x_sgB^4);$
- y_sgC=(x_sgC^4)/(192+0.8*x_sgC^4);
- $y_pgA=(x_pgA^4)/(192+0.8*x_pgA^4)*((2*r1/(D*sqrt(2)))^2)*$
- $*(0.312*(2*r1/(D*sqrt(2)))^2+1.18/((x_pgA^4)/$
- /(192+0.8*x_pgA^4)+0.27));
- $y_pgB=(x_pgB^4)/(192+0.8*x_pgB^4)*((2*r1/D)^2)*$
- $*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(192+0.8*x_pgB^4)+0.27));$
- $y_pgC = (x_pgC^4)/(192+0.8*x_pgC^4)*((2*r1/(D*sqrt(2)))^2)*$
- $(0.312(2*r1/(D*sqrt(2)))^2+1.18/((x_pgC^4)/$
- /(192+0.8*x_pgC^4)+0.27));

RgA=Rg_*(1+alfaCu*(TgA-20))*(1+y_sgA+y_pgA);%Активное сопротивление жилы переменному току при температуре 20 гр.Ц.

```
RgB=Rg_*(1+alfaCu*(TgB-20))*(1+y_sgB+y_pgB);%Активное сопротивление жилы переменному току при температуре 20 гр.Ц.
```

```
RgC=Rg_*(1+alfaCu*(TgC-20))*(1+y_sgC+y_pgC);%Активное сопротивление жилы переменному току при температуре 20 гр.Ц.
```

```
PgA=IgA^2*RgA; PgB=IgB^2*RgB; PgC=IgC^2*RgC; %Тепловыделения в жилах, Вт/м 
%% 7. РАСЧЁТ ТЕМПЕРАТУР ЖИЛ НА ТЕКУЩЕМ ШАГЕ
```

<u>ИНТЕГРИРОВАНИЯ</u>

% Расчёт источников дискретной модели

Jc1A=TgA./Rc1+ic1A; Jc1B=TgB./Rc1+ic1B; Jc1C=TgC./Rc1+ic1C; %Величины

источников теплового потока в дискретной модели ёмкости С1, Вт/м

```
J1A=Jc1A+PgA; J1B=Jc1B+PgB; J1C=Jc1C+PgC ;%Сложение источников теплового потока, параллельных ёмкости C1
```

Ec2A=Uc2A+ic2A.*Rc2; Ec2B=Uc2B+ic2B.*Rc2; Ec2C=Uc2C+ic2C.*Rc2; %Величины источников температуры дискретных моделей ёмкости С2, К

E1A=J1A.*Rc1; E1B=J1B.*Rc1; E1C=J1C.*Rc1; %Эквивалентное преобразование источников теплового потока в источники температуры

% Расчёт модели

fiA=(E1A./(Rc1+Rti)+Ec2A./Rc2+TsA./Rti)./(1./(Rc1+Rti)+1./Rc2+1./Rti); %Текущий потенциал на ёмкости С2 для фазы А, К

fiB=(E1B./(Rc1+Rti)+Ec2B./Rc2+TsB./Rti)./(1./(Rc1+Rti)+1./Rc2+1./Rti); %Текущий потенциал на ёмкости С2 для фазы В, К

fiC=(E1C./(Rc1+Rti)+Ec2C./Rc2+TsC./Rti)./(1./(Rc1+Rti)+1./Rc2+1./Rti); %Текущий потенциал на ёмкости С2 для фазы С, К

ic1A=PgA+(fiA-E1A)./(Rc1+Rti); %Текущий тепловой поток на С1 для фазы А, Вт/м

ic1B=PgB+(fiB-E1B)./(Rc1+Rti); %Текущий тепловой поток на С1 для фазы В, Вт/м

ic1C=PgC+(fiC-E1C)./(Rc1+Rti); %Текущий тепловой поток на С1 для фазы С, Вт/м

ic2A=(fiA-Ec2A)./Rc2; %Текущий тепловой поток на C2 для фазы A, Вт/м

ic2B=(fiB-Ec2B)./Rc2; %Текущий тепловой поток на C2 для фазы В, Вт/м

ic2C=(fiC-Ec2C)./Rc2; %Текущий тепловой поток на C2 для фазы C, Вт/м

TgA=fiA-((fiA-E1A).*Rti)./(Rc1+Rti); %Текущая температура жилы фазы А, К

TgB=fiB-((fiB-E1B).*Rti)./(Rc1+Rti); %Текущая температура жилы фазы В, К

TgC=fiC-((fiC-E1C).*Rti)./(Rc1+Rti); %Текущая температура жилы фазы С, К

TgA1(k)=TgA; TgB1(k)=TgB; TgC1(k)=TgC; %Запись температур жил в общие массивы данных

Uc2A=fiA; Uc2B=fiB; Uc2C=fiC; %Потенциал на C2 для текущего шага интегрирования end

%% 8. ВИЗУАЛИЗАЦИЯ РЕЗУЛЬТАТОВ

% Расчёт погрешностей

DgAComs=pdTA.TAg-TgA1;

DgBComs=pdTB.TBg-TgB1;

DgCComs=pdTC.TCg-TgC1;

% Фаза "А"

figure

hold on

plot(tt./86400,TgA1,'r--') plot(tt./86400,pdTA.TAg,'r',tt./86400,pdTA.TAe,'b') grid on title('Темперарура жилы и экрана фазы "А"') figure plot(tt./86400,DgAComs,'r') grid on title('Погешость для фазы "А"') % Фаза "В" figure hold on plot(tt./86400,TgB1,'r--') plot(tt./86400,pdTB.TBg,'r',tt./86400,pdTB.TBe,'b') grid on title('Темперарура жилы и экрана фазы "В"') figure plot(tt./86400,DgBComs,'r') grid on title('Погешость для фазы "В"') % Фаза "С" figure hold on plot(tt./86400,TgC1,'r--') plot(tt./86400,pdTC.TCg,'r',tt./86400,pdTC.TCe,'b') grid on title('Темперарура жилы и экрана фазы "С"') figure plot(tt./86400,DgCComs,'r') grid on title('Погешость для фазы "С"')

Приложение М

(обязательное)

Математический алгоритм для прогнозирования нагрева жил кабелей в одном сечении

КЛ в режиме реального времени, написанный в программе MATLAB

<u>%% І. ВВОД ИСХОДНЫХ ДАННЫХ</u>

f=50; %Частота тока, Гц

%Параметры жилы

r1=0.0428/2;% Радиус жилы, м

gammaCu=58100000; %Удельная электрическая проводимость, См/м

alfaCu=0.0039; %Температурный коэффициент сопротивления меди, 1/К

сси=384.18; %Удельная теплоемкость меди, Дж/(кг*К)

Plcu=8960; %Плотность меди, кг/м^3

Sg_Cu=0.0012; %Площадь сечения меди в жиле (по каталогу), мм^2

k_sg=1; %Коэффициент влияния конструкции жилы на поверхностный эффект

k_pg=1; %Коэффициент влияния конструкции жилы на эффект близости

%Параметры изоляции

r2=0.0938/2; %Наружный радиус внутренней изоляции, м

lymda_pe=0.235; %Удельная теплопроводность полиэтилена, Вт/(м*К)

Plpe=930; %Плотность полиэтилена, кг/м^3

сре=2350; %Удельная теплоемкость полиэтилена, Дж/(кг*К)

%Параметры экрана

r3=0.0978/2;%Наружный радиус экрана, м

Se_Cu=0.000095; %Площадь сечения меди в экране (по каталогу), мм^2

k_se=((r3-r2)/(r3+r2))*(((r3+2*r2)/(r3+r2))^2); %Коэффициент влияния конструкции экрана на поверхностный эффект

k_pe=0.8; %Коэффициент влияния конструкции экрана на эффект близости

%Параметры оболочки

r4=0.1118/2; %Наружный радиус внешней изоляции, м

D=4*r4; %Расстояние между осями кабелей

%Параметры грунта

lymda_Gr=1; %Теплопроводность грунта, Вт/(м*К)

сGr=1250; %Удельная теплоёмкость грунта, Дж/(кг*К)

PlGr=1600; %Плотность грунта, кг/м^3

%Собственные и взаимные сопротивления тепловым потокам от фаз КЛ (определяются с помощью МКЭ)

RtgA=1.2995442584; %Собственное тепловое сопротивление тепловому потоку от экрана фазы "А" в грунте

RtgB=1.9630485954; %Собственное тепловое сопротивление тепловому потоку от экрана фазы "В" в грунте

RtgC=RtgA; %Собственное тепловое сопротивление тепловому потоку от экрана фазы "С" в грунте

RtAB=0.9702697197; %Взаимное тепловое сопротивление между фазами "А" и "В"

RtAC=3.2696060108; %Взаимное тепловое сопротивление между фазами "А" и "С"

RtBC=RtAB; %Взаимное тепловое сопротивление между фазами "В" и "С"

<u>%% II. РАСЧЁТ ПАРАМЕТРОВ МОДЕЛИ</u>

% Расчёт активных сопротивлений жил и экранов постоянному току с учётом коэффициента заполнения

Sg=pi*r1^2; %Общая площадь сечения жилы, мм^2

Se=pi*(r3^2-r2^2); %Общая площадь сечения экрана, мм^2

```
gamma_g_ekv=gammaCu*Sg_Cu/Sg; %Эквивалентная электрическая проводимость жилы, См/м
```

gamma_e_ekv=gammaCu*Se_Cu/Se; %Эквивалентная электрическая проводимость экрана, См/м

Rg_=1/(gamma_g_ekv*Sg); %Сопротивление жилы постоянному току при температуре 20 гр. Цельсия

Re_=1/(gamma_e_ekv*Se); %Сопротивление экрана постоянному току при температуре

20 гр. Цельсия

%Расчёт параметров схемы замещения

Rti=log(r2/r1)/(2*pi*lymda_pe); %Тепловое сопротивление 1 из 2 слоёв изоляции

Rto=log(r4/r3)/(2*pi*lymda_pe); %Тепловое сопротивление внешней оболочки

Rtg1A=(RtgA-Rto)/4; %Тепловое сопротивление одного слоя грунта тепловому потоку от оболочки фазы "А"

Rtg1B=(RtgB-Rto)/4; %Тепловое сопротивление одного слоя грунта тепловому потоку от оболочки фазы "В"

Rtg1C=Rtg1A; %Тепловое сопротивление одного слоя грунта тепловому потоку от оболочки фазы "С"

R1=2*RtAB+(RtAB^2)/RtgB; R2=RtAB+2*RtgB; %Промежуточные вычисления

R3=(RtAC*R1)/(RtAC+R1)+(RtgA*R2)/(RtgA+R2); %Промежуточные вычисления

RvhA=RtgA*R2*R3/(RtgA*R2+R2*R3+RtgA*R3)-Rto; %Входное тепловое

сопротивление относительно экрана фазы "А"

RvhB=((RtAB+RtgA)^2)*RtgB/((RtAB+RtgA)^2+2*RtgB*(RtAB+RtgA))-Rto; %Входное тепловое сопротивление относительно экрана фазы "А"

rekvA=r4*exp(RvhA*2*pi*lymda_Gr); %Эквивалентный внешний радиус эквивалентного цилиндрического теплового поля для фазы "А"

rekvB=r4*exp(RvhB*2*pi*lymda_Gr); %Эквивалентный внешний радиус эквивалентного цилиндрического теплового поля для фазы "В"

r41A=(r4^3*rekvA)^(1/4); %Внешний радиус первого слоя грунта для эквивалентного цилиндрического поля фазы "А"

r42A=(r4*rekvA)^(1/2); %Внешний радиус второго слоя грунта для эквивалентного цилиндрического поля фазы "А"

r43A=(r4*rekvA^3)^(1/4); %Внешний радиус третьего слоя грунта для эквивалентного цилиндрического поля фазы "А"

r41B=(r4^3*rekvB)^(1/4); %Внешний радиус первого слоя грунта для эквивалентного цилиндрического поля фазы "В"

```
r42B=(r4*rekvB)^(1/2); %Внешний радиус второго слоя грунта для эквивалентного цилиндрического поля фазы "В"
```

```
r43B=(r4*rekvB^3)^(1/4); %Внешний радиус третьего слоя грунта для эквивалентного цилиндрического поля фазы "В"
```

Cg=ccu*Plcu*pi*r1^2; %Теплоёмкость жилы

Ci=cpe*Plpe*pi*(r2^2-r1^2); %Теплоёмкость изоляции

Ce=ccu*Plcu*pi*(r3^2-r2^2); %Теплоёмкость экрана

Co=cpe*Plpe*pi*(r4^2-r3^2); %Теплоёмкость оболочки

CGr1A=cGr*PlGr*pi*(r41A^2-r4^2); %Теплоёмкость грунта

CGr2A=cGr*PlGr*pi*(r42A^2-r41A^2); %Теплоёмкость первого слоя грунта для эквивалентного цилиндрического поля фазы "А"

CGr3A=cGr*PlGr*pi*(r43A^2-r42A^2); %Теплоёмкость второго слоя грунта для эквивалентного цилиндрического поля фазы "А"

CGr4A=cGr*PlGr*pi*(rekvA^2-r43A^2); %Теплоёмкость третьего слоя грунта для эквивалентного цилиндрического поля фазы "А"

CGr1B=cGr*PlGr*pi*(r41B^2-r4^2); %Теплоёмкость первого слоя грунта для эквивалентного цилиндрического поля фазы "В"

CGr2B=cGr*PlGr*pi*(r42B^2-r41B^2); %Теплоёмкость второго слоя грунта для эквивалентного цилиндрического поля фазы "В"

CGr3B=cGr*PlGr*pi*(r43B^2-r42B^2); %Теплоёмкость третьего слоя грунта для эквивалентного цилиндрического поля фазы "В"

CGr4B=cGr*PlGr*pi*(rekvB^2-r43B^2); %Теплоёмкость четвёртого слоя грунта для эквивалентного цилиндрического поля фазы "В"

pwi=1/(2*log(r2/r1))-1/((r2/r1)^2-1); %Коэффициент Ван-Вормера для изоляции

pwo=1/(2*log(r4/r3))-1/((r4/r3)^2-1); %Коэффициент Ван-Вормера для оболочки

pwGrA=1/(log(rekvA/r4))-1/((rekvA/r4)-1); %Коэффициент Ван-Вормера для эквивалентного цилиндрического поля фазы "А"

pwGrB=1/(log(rekvB/r4))-1/((rekvB/r4)-1); %Коэффициент Ван-Вормера для эквивалентного цилиндрического поля фазы "В"

C1=Cg+pwi*Ci; %Теплоёмкость С1 в схеме замещения

C2=(1-pwi)*Ci+Ce+pwo*Co; %Теплоёмкость С2 в схеме замещения

C3A=(1-pwo)*Co+pwGrA*CGr1A; %Теплоёмкость С3 в схеме замещения для фазы "А"

C4A=(1-pwGrA)*CGr1A+pwGrA*CGr2A; %Теплоёмкость С4 в схеме замещения для фазы "А"

C5A=(1-pwGrA)*CGr2A+pwGrA*CGr3A; %Теплоёмкость С5 в схеме замещения для фазы "А"

С6А=(1-pwGrA)*СGr3А+pwGrA*CGr4А; %Теплоёмкость С6 в схеме замещения для фазы "А"

C3B=(1-pwo)*Co+pwGrB*CGr1B; %Теплоёмкость C3 в схеме замещения для фазы "В" C4B=(1-pwGrB)*CGr1B+pwGrB*CGr2B; %Теплоёмкость C4 в схеме замещения для фазы "В" C5B=(1-pwGrB)*CGr2B+pwGrB*CGr3B; %Теплоёмкость С5 в схеме замещения для фазы "В"

C6B=(1-pwGrB)*CGr3B+pwGrB*CGr4B; %Теплоёмкость С6 в схеме замещения для фазы "В"

СЗС=СЗА; %Теплоёмкость СЗ в схеме замещения для фазы "С"

С4С=С4А; %Теплоёмкость С4 в схеме замещения для фазы "С"

С5С=С5А; %Теплоёмкость С5 в схеме замещения для фазы "С"

С6С=С6А; %Теплоёмкость С6 в схеме замещения для фазы "С"

%Дополнительные параметры

h=864; T1=180*86400; m=T1/h+1; k=1; %Данные для основного щикла расчёта

h1=864/8; eps=0.1; j=1; %Данные для цикла начальных условий

Тр=86400*2; n=1; %Данные для цикла прогноза

Uc11A=0; Uc11B=0; Uc11C=0; Uc22A=0; Uc22B=0; Uc22C=0; %Обнуление массивов

Uc33A=0; Uc33B=0; Uc33C=0; Uc44A=0; Uc44B=0; Uc44C=0; %Обнуление массивов

JgA1=0; JgB1=0; JgC1=0; TgApr=0; TgBpr=0; TgCpr=0; %Обнуление массивов

JeA1=0; JeB1=0; JeC1=0; TeApr=0; TeBpr=0; TeCpr=0; %Обнуление массивов

tt=0; tt1=0; %Обнуление массивов

<u>%% III. СЧИТЫВАНИЕ ПАРАМЕТРОВ РЕЖИМА</u>

IgA=pdIgA.IgA(k)./sqrt(2); IgB=pdIgB.IgB(k)./sqrt(2); IgC=pdIgC.IgC(k)./sqrt(2); %Модули действующих значений токов в жилах

IeA=pdIeA.IeA(k)./sqrt(2); IeB=pdIeB.IeB(k)./sqrt(2); IeC=pdIeC.IeC(k)./sqrt(2); %Модули действующих значений токов в экранах

TeA=pdTA.TAe(k); TeB=pdTB.TBe(k); TeC=pdTC.TCe(k); %Температуры в экранах

Evn=10; %Внешняя температура

<u>%% IV. РАСЧЕТ ИСХОДНЫХ НАЧАЛЬНЫХ УСЛОВИЙ</u>

Jg0A=0; Je0A=0; Jg0B=0; Je0B=0; Jg0C=0; Je0C=0; %Тепловые потоки от жил и экранов

до включения КЛ под нагрузку

tt1(n)=0; tt(k)=0; %Начальное время

% 1. расчёт начальных тепловых потенциалов на ёмкостях

Uc1A = Jg0A.*(Rti+Rto+4*Rtg1A) + Je0A.*(Rto+4*Rtg1A) + Evn; Uc11A(k) = Uc1A;

%Начальный потенциал на ёмкости С1 фазы "А"

Uc2A=(Jg0A+Je0A).*(Rto+4*Rtg1A)+Evn; Uc22A(k)=Uc2A; %Начальный потенциал на ёмкости C2 фазы "А"

Uc3A=(Jg0A+Je0A).*4*Rtg1A+Evn; Uc33A(k)=Uc3A; %Начальный потенциал на ёмкости C3A

Uc4A=(Jg0A+Je0A).*3*Rtg1A+Evn; Uc44A(k)=Uc4A; %Начальный потенциал на ёмкости C4A

Uc5A=(Jg0A+Je0A).*2*Rtg1A+Evn; %Начальный потенциал на ёмкости C5A

Uc6A=(Jg0A+Je0A).*Rtg1A+Evn; %Начальный потенциал на ёмкости C6A

Uc1B=Jg0B.*(Rti+Rto+4*Rtg1B)+Je0B.*(Rto+4*Rtg1B)+Evn; Uc11B(k)=Uc1B;

%Начальный потенциал на ёмкости С2 фазы "В"

Uc2B=(Jg0B+Je0B).*(Rto+4*Rtg1B)+Evn; Uc22B(k)=Uc2B; %Начальный потенциал на ёмкости C2 фазы "В"

Uc3B=(Jg0B+Je0B).*4*Rtg1B+Evn; Uc33B(k)=Uc3B; %Начальный потенциал на ёмкости C3B

Uc4B=(Jg0B+Je0B).*3*Rtg1B+Evn; Uc44B(k)=Uc4B; %Начальный потенциал на ёмкости C4B

Uc5B=(Jg0B+Je0B).*2*Rtg1B+Evn; %Начальный потенциал на ёмкости C5B

Uc6B=(Jg0B+Je0B).*Rtg1B+Evn; %Начальный потенциал на ёмкости С6В

Uc1C=Jg0C.*(Rti+Rto+4*Rtg1C)+Je0C.*(Rto+4*Rtg1C)+Evn; Uc11C(k)=Uc1C;

%Начальный потенциал на ёмкости С2 фазы "С"

```
Uc2C=(Jg0C+Je0C).*(Rto+4*Rtg1C)+Evn; Uc22C(k)=Uc2C; %Начальный потенциал на ёмкости C2 фазы "С"
```

```
Uc3C=(Jg0C+Je0C).*4*Rtg1C+Evn; Uc33C(k)=Uc3C; %Начальный потенциал на ёмкости C3C
```

Uc4C=(Jg0C+Je0C).*3*Rtg1C+Evn; Uc44B(k)=Uc4B; %Начальный потенциал на ёмкости C4C

Uc5C=(Jg0C+Je0C).*2*Rtg1C+Evn; %Начальный потенциал на ёмкости C5C

Uc6C=(Jg0C+Je0C).*Rtg1C+Evn; %Начальный потенциал на ёмкости С6С

% 2. расчёт начальных тепловыделений в жилах и экранах с учётом эффекта

близости, поверхностного эффекта и температурного коэффициента сопротивления

 $x_sgA = sqrt(8*pi*f*k_sg*(10^{-7})/(Rg_*(1+alfaCu*(Uc1A-20))));$ $x_sgB = sqrt(8*pi*f*k_sg*(10^{-7})/(Rg_*(1+alfaCu*(Uc1B-20))));$ $x_sgC = sqrt(8*pi*f*k_sg*(10^{-7})/(Rg_*(1+alfaCu*(Uc1C-20))));$ $x_seA = sqrt(8*pi*f*k_se*(10^{-7})/(Re_*(1+alfaCu*(Uc2A-20))));$

x_seB=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(Uc2B-20))));

 $x_seC = sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(Uc2C-20))));$

 $x_pgA=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1A-20))));$

 $x_pgB=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1B-20))));$

 $x_pgC = sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1C-20))));$

 $x_peA = sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2A-20))));$

 $x_peB=sqrt(8*pi*f*k_pe*(10^{-7})/(Re_*(1+alfaCu*(Uc2B-20))));$

 $x_peC = sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2C-20))));$

y_sgA=(x_sgA^4)/(192+0.8*x_sgA^4); y_sgB=(x_sgB^4)/(192+0.8*x_sgB^4);

y_sgC=(x_sgC^4)/(192+0.8*x_sgC^4); %Коэффициенты поверхностного эффекта для жил фаз "А", "В" и "С" соответственно

y_seA=(x_seA^4)/(192+0.8*x_seA^4); y_seB=(x_seB^4)/(192+0.8*x_seB^4);

y_seC=(x_seC^4)/(192+0.8*x_seC^4); %Коэффициенты поверхностного эффекта для

экранов фаз "А", "В" и "С" соответственно

y_pgA=(x_pgA^4)/(192+0.8*x_pgA^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+ 1.18/((x_pgA^4)/(192+0.8*x_pgA^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "А"

y_pgB=(x_pgB^4)/(192+0.8*x_pgB^4)*((2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(1 92+0.8*x_pgB^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "В"

 $y_pgC = (x_pgC^4)/(192+0.8*x_pgC^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+$

1.18/((x_pgC^4)/(192+0.8*x_pgC^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "С"

у_peA=(x_peA^4)/(192+0.8*x_peA^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+ 1.18/((x_peA^4)/(192+0.8*x_peA^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "А"

y_peB=(x_peB^4)/(192+0.8*x_peB^4)*((2*r3/D)^2)*(0.312*(2*r3/D)^2+1.18/((x_peB^4)/(1 92+0.8*x_peB^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "В" y_peC=(x_peC^4)/(192+0.8*x_peC^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+ 1.18/((x_peC^4)/(192+0.8*x_peC^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "С"

RgA=Rg_*(1+alfaCu*(Uc1A-20))*(1+y_sgA+y_pgA); %Активное сопротивление жилы фазы "А" переменному току при текущей температуре

RgB=Rg_*(1+alfaCu*(Uc1B-20))*(1+y_sgB+y_pgB); %Активное сопротивление жилы фазы "В" переменному току при текущей температуре

RgC=Rg_*(1+alfaCu*(Uc1C-20))*(1+y_sgC+y_pgC); %Активное сопротивление жилы фазы "С" переменному току при текущей температуре

ReA=Re_*(1+alfaCu*(Uc2A-20))*(1+y_seA+y_peA); %Активное сопротивление экрана фазы "А" переменному току при текущей температуре

ReB=Re_*(1+alfaCu*(Uc2B-20))*(1+y_seB+y_peB); %Активное сопротивление экрана фазы "В" переменному току при текущей температуре

ReC=Re_*(1+alfaCu*(Uc2C-20))*(1+y_seC+y_peC); %Активное сопротивление экрана фазы "С" переменному току при текущей температуре

JgA=IgA(k)^2*RgA; JgB=IgB(k)^2*RgB; JgC=IgC(k)^2*RgC; %Тепловыделения в жилах JeA=IeA(k)^2*ReA; JeB=IeB(k)^2*ReB; JeC=IeC(k)^2*ReC; %Тепловыделения в экранах

% 3. определение начальных тепловых потоков в ёмкостях

ic1A=JgA; ic1B=JgB; ic1C=JgB; %Начальные тепловые потоки в ёмкостях C1 ic2A=JeA; ic2B=JeB; ic2C=JeC; %Начальные тепловые потоки в ёмкостях C2 ic3A=0; ic3B=0; ic3C=0; %Начальные тепловые потоки в ёмкостях C3 ic4A=0; ic4B=0; ic4C=0; %Начальные тепловые потоки в ёмкостях C4 ic5A=0; ic5B=0; ic5C=0; %Начальные тепловые потоки в ёмкостях C5 ic6A=0; ic6B=0; ic6C=0; %Начальные тепловые потоки в ёмкостях C6 %% V. РАСЧЁТ СОПРОТИВЛЕНИЙ ДИСКРЕТНОЙ МОДЕЛИ Rc1=h1/(2*C1); %Дискретное сопротивление ёмкостей 1 для трёх фаз Rc2=h1/(2*C2); %Дискретное сопротивление ёмкостей 2 для трёх фаз Rc3A=h1/(2*C3A);Rc3B=h1/(2*C3B);Rc3C=Rc3A; %Дискретное сопротивление Зх ёмкостей для трёх фаз Rc4A=h1/(2*C4A);Rc4B=h1/(2*C4B);Rc4C=Rc4A; %Дискретное сопротивление 4х ёмкостей для трёх фаз

 Rc5A=h1/(2*C5A);
 Rc5B=h1/(2*C5B);
 Rc5C=Rc5A; %Дискретное сопротивление

 5х ёмкостей для трёх фаз
 5

 Rc6A=h1/(2*C6A);
 Rc6B=h1/(2*C6B);
 Rc6C=Rc6A; %Дискретное сопротивление

 5х ёмкостей для трёх фаз
 5

<u>%% VI. ЦИКЛ РАСЧЁТА НЕНУЛЕВЫХ НАЧАЛЬНЫХ УСЛОВИЙ</u>

while abs((TeA+TeB+TeC)-(Uc2A+Uc2B+Uc2C))>=eps %Условие остановки цикла

% А) РАСЧЕТ ИСТОЧНИКОВ ДИСКРЕТНОЙ МОДЕЛИ

Jc1A=Uc1A./Rc1+ic1A; Jc1B=Uc1B./Rc1+ic1B; Jc1C=Uc1C./Rc1+ic1C; %Величины источников тока дискретной модели ёмкостей 1 для трёх фаз

Jc2A=Uc2A./Rc2+ic2A; Jc2B=Uc2B./Rc2+ic2B; Jc2C=Uc2C./Rc2+ic2C; %Величины источников тока дискретных моделей ёмкостей 2 для трёх фаз

J1A=JgA+Jc1A; J1B=JgB+Jc1B; J1C=JgC+Jc1C; %Сложение источников тока около ёмкости 1

J2A=Jc2A+JeA; J2B=Jc2B+JeB; J2C=Jc2C+JeC; %Сложение источников тока около ёмкости 2

E1A=J1A.*Rc1; E1B=J1B.*Rc1; E1C=J1C.*Rc1; %Эквивалентное преобразование источников около ёмкости 1

E2A=J2A.*Rc2; E2B=J2B.*Rc2; E2C=J2C.*Rc2; %Эквивалентное преобразование источников около ёмкости 2

Ес3А=Uc3A+ic3A*Rc3A; Еc3B=Uc3B+ic3B*Rc3B; Еc3C=Uc3C+ic3C*Rc3C; %Величины источников ЭДС дискретных моделей 3х ёмкостей для трёх фаз Еc4A=Uc4A+ic4A*Rc4A; Ec4B=Uc4B+ic4B*Rc4B; Ec4C=Uc4C+ic4C*Rc4C; %Величины источников ЭДС дискретных моделей 4х ёмкостей для трёх фаз Еc5A=Uc5A+ic5A*Rc5A; Ec5B=Uc5B+ic5B*Rc5B; Ec5C=Uc5C+ic5C*Rc5C; %Величины источников ЭДС дискретных моделей 5х ёмкостей для трёх фаз Еc6A=Uc6A+ic6A*Rc6A; Ec6B=Uc6B+ic6B*Rc6B; Ec6C=Uc6C+ic6C*Rc6C; %Величины источников ЭДС дискретных моделей 5х ёмкостей для трёх фаз Еc6A=Uc6A+ic6A*Rc6A; Ec6B=Uc6B+ic6B*Rc6B; Ec6C=Uc6C+ic6C*Rc6C; %Величины источников ЭДС дискретных моделей 5х ёмкостей для трёх фаз

%Узловая матрица проводимостей

A=[1/(Rti+Rc1)+1/Rc2+1/Rto+1/RtAB+1/RtAC -1/Rto 0 0 0 -1/RtAB 0 0 0 0 -1/RtAC 0 0 0 0;

-1/Rto 1/Rto+1/Rc3A+1/Rtg1A -1/Rtg1A 0 0 0 0 0 0 0 0 0 0 0;

```
0 -1/Rtg1A 2/Rtg1A+1/Rc4A -1/Rtg1A 0 0 0 0 0 0 0 0 0 0 0;
0 0 -1/Rtg1A 2/Rtg1A+1/Rc5A -1/Rtg1A 0 0 0 0 0 0 0 0 0;
0 0 0 -1/Rtg1A 2/Rtg1A+1/Rc6A 0 0 0 0 0 0 0 0 0;
-1/RtAB 0 0 0 0 1/(Rti+Rc1)+1/Rc2+1/Rto+1/RtAB+1/RtBC -1/Rto 0 0 0 -1/RtBC 0 0 0
```

0;

0 0 0 0 0 -1/Rto 1/Rto+1/Rc3B+1/Rtg1B -1/Rtg1B 0 0 0 0 0 0; 0 0 0 0 0 -1/Rtg1B 2/Rtg1B+1/Rc4B -1/Rtg1B 0 0 0 0 0; 0 0 0 0 0 0 -1/Rtg1B 2/Rtg1B+1/Rc5B -1/Rtg1B 0 0 0 0; 0 0 0 0 0 0 0 -1/Rtg1B 2/Rtg1B+1/Rc6B 0 0 0 0; -1/RtAC 0 0 0 0 -1/RtBC 0 0 0 0 1/(Rti+Rc1)+1/Rc2+1/Rto+1/RtBC+1/RtAC -1/Rto 0 0

0;

0 0 0 0 0 0 0 0 0 0 -1/Rto 1/Rto+1/Rc3C+1/Rtg1C -1/Rtg1C 0 0;

00000000000-1/Rtg1C 2/Rtg1C+1/Rc4C -1/Rtg1C 0;

000000000000-1/Rtg1C 2/Rtg1C+1/Rc5C -1/Rtg1C;

0000000000000-1/Rtg1C 2/Rtg1C+1/Rc6C;];

%Матрица-стоблец правых частей уравнений по методу узловых потенциалов

```
B=[E1A/(Rti+Rc1)+E2A/Rc2; Ec3A/Rc3A; Ec4A/Rc4A; Ec5A/Rc5A;
```

Ec6A/Rc6A+Evn/Rtg1A;

E1B/(Rti+Rc1)+E2B/Rc2; Ec3B/Rc3B; Ec4B/Rc4B; Ec5B/Rc5B;

Ec6B/Rc6B+Evn/Rtg1B;

E1C/(Rti+Rc1)+E2C/Rc2; Ec3C/Rc3C; Ec4C/Rc4C; Ec5C/Rc5C;

Ec6C/Rc6C+Evn/Rtg1C;];

fi=A\B; %Тепловые потенциалы в узлах 1-15 дискретной схемы замещения

%Текущие значения тепловых потоков в ёмкостях

```
ic1A=JgA+(fi(1)-E1A)./(Rc1+Rti); ic1B=JgB+(fi(6)-E1B)./(Rc1+Rti); ic1C=JgC+(fi(11)-E1C)./(Rc1+Rti);
```

ic2A=JeA+(fi(1)-E2A)./Rc2; ic2B=JeB+(fi(6)-E2B)./Rc2; ic2C=JeC+(fi(11)-E2C)./Rc2;ic2A=(fi(2)-Ec2A)/Pc2A; ic2P=(fi(7)-Ec2P)/Pc2P; ic2C=(fi(12)-Ec2C)/Pc2C

1C3A = (11(2) - EC3A)/RC3A;	1C3B = (f1(/) - EC3B)/RC3B;	$1c_3C = (f_1(12) - Ec_3C)/Rc_3C;$
ic4A=(fi(3)-Ec4A)/Rc4A;	ic4B=(fi(8)-Ec4B)/Rc4B;	ic4C=(fi(13)-Ec4C)/Rc4C;
ic5A=(fi(4)-Ec5A)/Rc5A;	ic5B=(fi(9)-Ec5B)/Rc5B;	ic5C=(fi(14)-Ec5C)/Rc5C;
ic6A=(fi(5)-Ec6A)/Rc6A;	ic6B=(fi(10)-Ec6B)/Rc6B;	ic6C=(fi(15)-Ec6C)/Rc6C;

%Текущие значения тепловых потенциалов на ёмкостях

Uc1A=fi(1)-(fi(1)-E1A).*Rti./(Rc1+Rti); Uc1B=fi(6)-(fi(6)-E1B).*Rti./(Rc1+Rti);

Uc1C=fi(11)-(fi(11)-E1C).*Rti./(Rc1+Rti);

Uc1A; Uc1B; Uc1C;

Uc2A=fi(1); Uc2B=fi(6); Uc2C=fi(11);

Uc2A; Uc2B; Uc2C;

Uc3A=fi(2); Uc3B=fi(7); Uc3C=fi(12);

Uc4A=fi(3); Uc4B=fi(8); Uc4C=fi(13);

Uc5A=fi(4); Uc5B=fi(9); Uc5C=fi(14);

Uc6A=fi(5); Uc6B=fi(10); Uc6C=fi(15);

% В) РАСЧЁТ ТЕПЛОВЫДЕЛЕНИЙ С УЧЁТОМ ЭФФЕКТА БЛИЗОСТИ, ПОВЕРХНОСТНОГО ЭФФЕКТА И ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА СОПРОТИВЛЕНИЯ

x_sgA=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(Uc1A-20))));

 $x_sgB = sqrt(8*pi*f*k_sg*(10^{-7})/(Rg_*(1+alfaCu*(Uc1B-20))));$

 $x_sgC = sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(Uc1C-20))));$

x_seA=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(Uc2A-20))));

x_seB=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(Uc2B-20))));

x_seC=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(Uc2C-20))));

x_pgA=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1A-20))));

x_pgB=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1B-20))));

```
x_pgC=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1C-20))));
```

```
x_peA=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2A-20))));
```

```
x_peB=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2B-20))));
```

```
x_peC=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2C-20))));
```

y_sgA=(x_sgA^4)/(192+0.8*x_sgA^4); y_sgB=(x_sgB^4)/(192+0.8*x_sgB^4);

y_sgC=(x_sgC^4)/(192+0.8*x_sgC^4); %Коэффициенты поверхностного эффекта для жил фаз "А", "В" и "С" соответственно

y_seA=(x_seA^4)/(192+0.8*x_seA^4); y_seB=(x_seB^4)/(192+0.8*x_seB^4);

у_seC=(x_seC^4)/(192+0.8*x_seC^4); %Коэффициенты поверхностного эффекта для экранов фаз "А", "В" и "С" соответственно

y_pgA=(x_pgA^4)/(192+0.8*x_pgA^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+ 1.18/((x_pgA^4)/(192+0.8*x_pgA^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "А"

y_pgB=(x_pgB^4)/(192+0.8*x_pgB^4)*((2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(1 92+0.8*x_pgB^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "В"

 $y_pgC = (x_pgC^4)/(192+0.8*x_pgC^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+(0.312*(2*r1/(D*sqrt(2)))^2))^2 + (0.312*(2*r1/(D*sqrt(2)))^2) + (0.312*(2*r1/(D*sqrt(2))) + (0.312*(2*r1/(D*sqrt(2)))) + (0.312*(2*r1/(D*sqrt(2)))) + (0.312*($

1.18/((x_pgC^4)/(192+0.8*x_pgC^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "С"

y_peA=(x_peA^4)/(192+0.8*x_peA^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+ 1.18/((x_peA^4)/(192+0.8*x_peA^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "А"

y_peB=(x_peB^4)/(192+0.8*x_peB^4)*((2*r3/D)^2)*(0.312*(2*r3/D)^2+1.18/((x_peB^4)/(1 92+0.8*x_peB^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "В"

 $y_{peC} = (x_{peC}^{4})/(192+0.8*x_{peC}^{4})*((2*r3/(D*sqrt(2)))^{2})*(0.312*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2*r3/(D*sqrt(2)))^{2}+0.5)*(0.32*(2))^{2}+0.5)*(0.32*(2*$

1.18/((x_peC^4)/(192+0.8*x_peC^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "С"

RgA=Rg_*(1+alfaCu*(Uc1A-20))*(1+y_sgA+y_pgA); %Активное сопротивление жилы переменному току при текущей температуре

RgB=Rg_*(1+alfaCu*(Uc1B-20))*(1+y_sgB+y_pgB); %Активное сопротивление жилы переменному току при текущей температуре

RgC=Rg_*(1+alfaCu*(Uc1C-20))*(1+y_sgC+y_pgC); %Активное сопротивление жилы переменному току при текущей температуре

ReA=Re_*(1+alfaCu*(Uc2A-20))*(1+y_seA+y_peA); %Активное сопротивление экрана переменному току при текущей температуре

ReB=Re_*(1+alfaCu*(Uc2B-20))*(1+y_seB+y_peB); %Активное сопротивление экрана переменному току при текущей температуре

ReC=Re_*(1+alfaCu*(Uc2C-20))*(1+y_seC+y_peC); %Активное сопротивление экрана переменному току при текущей температуре

JgA=IgA(k)^2*RgA; JgB=IgB(k)^2*RgB; JgC=IgC(k)^2*RgC; %Тепловыделения в жилах JeA=IeA(k)^2*ReA; JeB=IeB(k)^2*ReB; JeC=IeC(k)^2*ReC; %Тепловыделения в экранах

j=j+1; %Счётчик

end

Uc11A(k)=Uc1A; Uc11B(k)=Uc1B; Uc11C(k)=Uc1C; %Запись в отдельный массив Uc22A(k)=Uc2A; Uc22B(k)=Uc2B; Uc22C(k)=Uc2C; %Запись в отдельный массив Uc33A(k)=Uc3A; Uc33B(k)=Uc3B; Uc33C(k)=Uc3C; %Запись в отдельный массив Uc44A(k)=Uc4A; Uc44B(k)=Uc4B; Uc44C(k)=Uc4C; %Запись в отдельный массив TgApr(n)=Uc1A; TgBpr(n)=Uc1B; TgCpr(n)=Uc1C; %Запись в отдельный массив TeApr(n)=Uc2A; TeBpr(n)=Uc2B; TeCpr(n)=Uc2C; %Запись в отдельный массив %% VII. РАСЧЁТ СОПРОТИВЛЕНИЙ ДИСКРЕТНОЙ МОДЕЛИ

Rc1=h/(2*C1); %Дискретное сопротивление ёмкостей 1 для трёх фаз

Rc2=h/(2*C2); %Дискретное сопротивление ёмкостей 2 для трёх фаз

 Rc3A=h/(2*C3A);
 Rc3B=h/(2*C3B);
 Rc3C=Rc3A; %Дискретное сопротивление

3х ёмкостей для трёх фаз

 Rc4A=h/(2*C4A);
 Rc4B=h/(2*C4B);
 Rc4C=Rc4A; %Дискретное сопротивление

 4x ёмкостей для трёх фаз
 4

Rc5A=h/(2*C5A); Rc5B=h/(2*C5B); Rc5C=Rc5A; %Дискретное сопротивление

5х ёмкостей для трёх фаз

Rc6A=h/(2*C6A); Rc6B=h/(2*C6B); Rc6C=Rc6A; %Дискретное сопротивление

5х ёмкостей для трёх фаз

<u>%% VIII. ЦИКЛ ПОСТОЯННОГО РАСЧЁТА НАЧАЛЬНЫХ УСЛОВИЙ И</u> ПРОГНОЗИРОВАНИЯ

for t=h:h:T1

%% 1. ПРОГНОЗ НАГРЕВА КАБЕЛЯ НА НА ВРЕМЯ Тр=2 СУТОК

if mod(tt(k),Tp)==0 %Условие выполниния прогноза

% Запись начальных условий для прогноза

Uc1Ap=Uc1A;Uc2Ap=Uc2A;Uc3Ap=Uc3A;Uc4Ap=Uc4A;Uc5Ap=Uc5A;Uc6Ap=Uc6A;

```
Uc1Bp=Uc1B;Uc2Bp=Uc2B;Uc3Bp=Uc3B;Uc4Bp=Uc4B;Uc5Bp=Uc5B;Uc6Bp=Uc6B;
```

Uc1Cp=Uc1C;Uc2Cp=Uc2C;Uc3Cp=Uc3C;Uc4Cp=Uc4C;Uc5Cp=Uc5C;Uc6Cp=Uc6C;

ic1Ap=ic1A;ic2Ap=ic2A;ic3Ap=ic3A;ic4Ap=ic4A;ic5Ap=ic5A;ic6Ap=ic6A;

ic1Bp=ic1B;ic2Bp=ic2B;ic3Bp=ic3B;ic4Bp=ic4B;ic5Bp=ic5B;ic6Bp=ic6B;

ic1Cp=ic1C;ic2Cp=ic2C;ic3Cp=ic3C;ic4Cp=ic4C;ic5Cp=ic5C;ic6Cp=ic6C;

%Запись тепловыделений в жилах и экранах для прогноза

JgAp=JgA; JgBp=JgB; JgCp=JgC;

JeAp=JeA; JeBp=JeB; JeCp=JeC;

%Запись тепловыделений в отдельные массивы

JgAp1(n)=JgAp; JgBp1(n)=JgBp; JgCp1(n)=JgCp;

JeAp1(n)=JeAp; JeBp1(n)=JeBp; JeCp1(n)=JeCp;

%1. ЦИКЛ РАСЧЁТА ПРОГНОЗИРУЕМЫХ ТЕМПЕРАТУР

for t1=h:h:Tp

if tt(k)==T1 %Условие прерывания цикла, если закончилось общее время расчёта break

end

n=n+1; %Счётчик индексов массивов

tt1(n)=tt1(n-1)+h; %Заполнение массива времени

% А) РАСЧЕТ ИСТОЧНИКОВ ДИСКРЕТНОЙ МОДЕЛИ

Jc1A=Uc1Ap./Rc1+ic1Ap; Jc1B=Uc1Bp./Rc1+ic1Bp; Jc1C=Uc1Cp./Rc1+ic1Cp;

%Величина источника тока дискретной модели ёмкостей 1 для трёх фаз

Jc2A=Uc2Ap./Rc2+ic2Ap; Jc2B=Uc2Bp./Rc2+ic2Bp; Jc2C=Uc2Cp./Rc2+ic2Cp;

%Величина источника тока дискретной модели ёмкостей 2 для трёх фаз

J1A=JgAp+Jc1A;J1B=JgBp+Jc1B;J1C=JgCp+Jc1C;%Сложение источников тока около ёмкости 1

J2A=JeAp+Jc2A;J2B=JeBp+Jc2B;J2C=JeCp+Jc2C;%Сложение источников тока около ёмкости 2

E1A=J1A.*Rc1; E1B=J1B.*Rc1; E1C=J1C.*Rc1; %Эквивалентное преобразование источников около ёмкости 1

```
E2A=J2A.*Rc2; E2B=J2B.*Rc2; E2C=J2C.*Rc2; %Эквивалентное преобразование источников около ёмкости 2
```

Ec3A=Uc3Ap+ic3Ap*Rc3A; Ec3B=Uc3Bp+ic3Bp*Rc3B; Ec3C=Uc3Cp+ic3Cp*Rc3C; %Величина источника ЭДС дискретной модели 3х ёмкостей для трёх фаз Ec4A=Uc4Ap+ic4Ap*Rc4A; Ec4B=Uc4Bp+ic4Bp*Rc4B; Ec4C=Uc4Cp+ic4Cp*Rc4C; %Величины источников ЭДС дискретных моделей 4х ёмкостей для трёх фаз Ec5A=Uc5Ap+ic5Ap*Rc5A; Ec5B=Uc5Bp+ic5Bp*Rc5B; Ec5C=Uc5Cp+ic5Cp*Rc5C; %Величины источников ЭДС дискретных моделей 5х ёмкостей для трёх фаз Ec6A=Uc6Ap+ic6Ap*Rc6A; Ec6B=Uc6Bp+ic6Bp*Rc6B; Ec6C=Uc6Cp+ic6Cp*Rc6C; %Величины источников ЭДС дискретных моделей 5х ёмкостей для трёх фаз

% Б) РАСЧЁТ ДИСКРЕТНОЙ МОДЕЛИ

%Матрица узловых проводимостей

```
A=[1/(Rti+Rc1)+1/Rc2+1/Rto+1/RtAB+1/RtAC -1/Rto 0 0 0 -1/RtAB 0 0 0 0 -1/RtAC 0 0 0 0;
```

-1/Rto 1/Rto+1/Rc3A+1/Rtg1A -1/Rtg1A 0 0 0 0 0 0 0 0 0 0 0;

0 -1/Rtg1A 2/Rtg1A+1/Rc4A -1/Rtg1A 0 0 0 0 0 0 0 0 0 0;

0 0 -1/Rtg1A 2/Rtg1A+1/Rc5A -1/Rtg1A 0 0 0 0 0 0 0 0 0 0;

0 0 0 -1/Rtg1A 2/Rtg1A+1/Rc6A 0 0 0 0 0 0 0 0 0 0;

```
-1/RtAB 0 0 0 0 1/(Rti+Rc1)+1/Rc2+1/Rto+1/RtAB+1/RtBC -1/Rto 0 0 0 -1/RtBC 0 0 0 0;
```

0 0 0 0 -1/Rto 1/Rto+1/Rc3B+1/Rtg1B -1/Rtg1B 0 0 0 0 0 0;

0 0 0 0 0 -1/Rtg1B 2/Rtg1B+1/Rc4B -1/Rtg1B 0 0 0 0 0;

000000-1/Rtg1B2/Rtg1B+1/Rc5B-1/Rtg1B00000;

0000000-1/Rtg1B2/Rtg1B+1/Rc6B00000;

```
-1/RtAC 0 0 0 0 -1/RtBC 0 0 0 0 1/(Rti+Rc1)+1/Rc2+1/Rto+1/RtBC+1/RtAC -1/Rto 0 0 0;
```

```
0000000000-1/Rto1/Rto+1/Rc3C+1/Rtg1C-1/Rtg1C00;
```

00000000000-1/Rtg1C 2/Rtg1C+1/Rc4C -1/Rtg1C 0;

000000000000-1/Rtg1C 2/Rtg1C+1/Rc5C -1/Rtg1C;

0000000000000-1/Rtg1C2/Rtg1C+1/Rc6C;];

%Матрица-столбец коэффициентов правых частей уравнений по методу узловых потенциалов

```
B=[E1A/(Rti+Rc1)+E2A/Rc2; Ec3A/Rc3A; Ec4A/Rc4A; Ec5A/Rc5A;
```

Ec6A/Rc6A+Evn/Rtg1A;

```
E1B/(Rti+Rc1)+E2B/Rc2; Ec3B/Rc3B; Ec4B/Rc4B; Ec5B/Rc5B;
```

Ec6B/Rc6B+Evn/Rtg1B;

```
E1C/(Rti+Rc1)+E2C/Rc2; Ec3C/Rc3C; Ec4C/Rc4C; Ec5C/Rc5C;
```

Ec6C/Rc6C+Evn/Rtg1C;];

fi=A\B; %Расчёт узловых потенциалов дискретной схемы замещения

%Текущие значения тепловых потоков в ёмкостях

ic1Ap=JgAp+(fi(1)-E1A)./(Rc1+Rti); ic1Bp=JgBp+(fi(6)-E1B)./(Rc1+Rti);

ic1Cp=JgCp+(fi(11)-E1C)./(Rc1+Rti);

ic2Ap=JeAp+(fi(1)-E2A)./Rc2; ic2Bp=JeBp+(fi(6)-E2B)./Rc2; ic2Cp=JeCp+(fi(11)-E2C)./Rc2;

```
ic3Ap=(fi(2)-Ec3A)/Rc3A; ic3Bp=(fi(7)-Ec3B)/Rc3B; ic3Cp=(fi(12)-Ec3C)/Rc3C;
ic4Ap=(fi(3)-Ec4A)/Rc4A; ic4Bp=(fi(8)-Ec4B)/Rc4B; ic4Cp=(fi(13)-Ec4C)/Rc4C;
ic5Ap=(fi(4)-Ec5A)/Rc5A; ic5Bp=(fi(9)-Ec5B)/Rc5B; ic5Cp=(fi(14)-Ec5C)/Rc5C;
ic6Ap=(fi(5)-Ec6A)/Rc6A; ic6Bp=(fi(10)-Ec6B)/Rc6B; ic6Cp=(fi(15)-Ec6C)/Rc6C;
%Текущие значения тепловых потенциалов на ёмкостях
```

```
Uc1Ap=fi(1)-(fi(1)-E1A).*Rti./(Rc1+Rti); Uc1Bp=fi(6)-(fi(6)-E1B).*Rti./(Rc1+Rti); Uc1Cp=fi(11)-(fi(11)-E1C).*Rti./(Rc1+Rti);
```

TgApr(n)=Uc1Ap; TgBpr(n)=Uc1Bp; TgCpr(n)=Uc1Cp;

Uc2Ap=fi(1); TeApr(n)=Uc2Ap; Uc2Bp=fi(6); TeBpr(n)=Uc2Bp; Uc2Cp=fi(11); TeCpr(n)=Uc2Cp;

Uc3Ap=fi(2);	Uc3Bp=fi(7);	Uc3Cp=fi(12);
Uc4Ap=fi(3);	Uc4Bp=fi(8);	Uc4Cp=fi(13);
Uc5Ap=fi(4);	Uc5Bp=fi(9);	Uc5Cp=fi(14);
Uc6Ap=fi(5);	Uc6Bp=fi(10);	Uc6Cp=fi(15);

% В) РАСЧЁТ ТЕПЛОВЫДЕЛЕНИЙ С УЧЁТОМ ЭФФЕКТА БЛИЗОСТИ, ПОВЕРХНОСТНОГО ЭФФЕКТА И ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА СОПРОТИВЛЕНИЯ

 $x_sgA=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(Uc1Ap-20))));$ $x_sgB=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(Uc1Bp-20))));$ $x_sgC=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(Uc2Ap-20))));$ $x_seA=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(Uc2Bp-20))));$ $x_seB=sqrt(8*pi*f*k_se*(10^-7)/(Rg_*(1+alfaCu*(Uc2Bp-20))));$ $x_pgA=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1Ap-20))));$ $x_pgB=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1Bp-20))));$ $x_pgC=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1Bp-20))));$ $x_peA=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc2Ap-20))));$ $x_peB=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2Bp-20))));$ $x_peC=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2Bp-20))));$ $x_peC=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2Bp-20))));$ $x_peC=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2Bp-20))));$ $y_sgA=(x_sgA^4)/(192+0.8*x_sgA^4); y_sgB=(x_sgB^4)/(192+0.8*x_sgB^4);$ $y_sgC=(x_sgC^4)/(192+0.8*x_sgC^4); %Koэффициенты поверхностного эффекта для жил$

фаз "А", "В" и "С" соответственно

y_seA=(x_seA^4)/(192+0.8*x_seA^4); y_seB=(x_seB^4)/(192+0.8*x_seB^4);

y_seC=(x_seC^4)/(192+0.8*x_seC^4); %Коэффициенты поверхностного эффекта для экранов фаз "А", "В" и "С" соответственно

y_pgA=(x_pgA^4)/(192+0.8*x_pgA^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+ 1.18/((x_pgA^4)/(192+0.8*x_pgA^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "А"

y_pgB=(x_pgB^4)/(192+0.8*x_pgB^4)*((2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(1 92+0.8*x_pgB^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "В"

y_pgC=(x_pgC^4)/(192+0.8*x_pgC^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+ 1.18/((x_pgC^4)/(192+0.8*x_pgC^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "С"

y_peA=(x_peA^4)/(192+0.8*x_peA^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+ 1.18/((x_peA^4)/(192+0.8*x_peA^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "А"

y_peB=(x_peB^4)/(192+0.8*x_peB^4)*((2*r3/D)^2)*(0.312*(2*r3/D)^2+1.18/((x_peB^4)/(1 92+0.8*x_peB^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "В"

у_peC=(x_peC^4)/(192+0.8*x_peC^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+ 1.18/((x_peC^4)/(192+0.8*x_peC^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "С"

RgAp=Rg_*(1+alfaCu*(Uc1Ap-20))*(1+y_sgA+y_pgA); %Активное сопротивление жилы фазы "А" переменному току при текущей температуре

RgBp=Rg_*(1+alfaCu*(Uc1Bp-20))*(1+y_sgB+y_pgB); %Активное сопротивление жилы фазы "В" переменному току при текущей температуре

RgCp=Rg_*(1+alfaCu*(Uc1Cp-20))*(1+y_sgC+y_pgC); %Активное сопротивление жилы фазы "С" переменному току при текущей температуре

ReAp=Re_*(1+alfaCu*(Uc2Ap-20))*(1+y_seA+y_peA); %Активное сопротивление экрана фазы "А" переменному току при текущей температуре

ReBp=Re_*(1+alfaCu*(Uc2Bp-20))*(1+y_seB+y_peB); %Активное сопротивление экрана фазы "В" переменному току при текущей температуре

ReCp=Re_*(1+alfaCu*(Uc2Cp-20))*(1+y_seC+y_peC); %Активное сопротивление экрана фазы "С" переменному току при текущей температуре

%Условия для расчёта телповыделений за последние сутки перед прогнозом

if n < Tp/h %Если это первые двое суток работы алгоритма, то

u=n; %берём индекс и так, чтобы учитывался ток за первые двое суток

else %Если это не первые сутки работы алгоритма, то

u=n-Tp/h+2; %берём индекс и так, чтобы учитывать ток за прошлые двое суток end

```
JgAp=(pdIgA.IgA(u)./sqrt(2))^2*RgAp; JgBp=(pdIgB.IgB(u)./sqrt(2))^2*RgBp;
JgCp=(pdIgC.IgC(u)./sqrt(2))^2*RgCp; %Тепловыделения в жилах
JeAp=(pdIeA.IeA(u)./sqrt(2))^2*ReAp; JeBp=(pdIeB.IeB(u)./sqrt(2))^2*ReBp;
JeCp=(pdIeC.IeC(u)./sqrt(2))^2*ReCp; %Тепловыделения в экранах
```

end

end

k=k+1; tt(k)=t; %Счётчик индексов и запись текущего времени в отдельный массив

%% 2. РАСЧЁТ ТЕКУЩИХ НАЧАЛЬНЫХ УСЛОВИЙ

% А) РАСЧЁТ ИСТОЧНИКОВ ДИСКРЕТНОЙ МОДЕЛИ

Jc1A=Uc1A./Rc1+ic1A; Jc1B=Uc1B./Rc1+ic1B; Jc1C=Uc1C./Rc1+ic1C; %Величины источников тока дискретной модели ёмкостей 1 для трёх фаз

Uc2A=TeA; Uc2B=TeB; Uc2C=TeC; %Потенциалы на ёмкостях C2 для трёх фаз на k-1 шаге интегрирования

Jc2A=Uc2A./Rc2+ic2A; Jc2B=Uc2B./Rc2+ic2B; Jc2C=Uc2C./Rc2+ic2C;%Величины источников тока дискретных моделей ёмкостей 2 для трёх фаз

J1A=JgA+Jc1A; J1B=JgB+Jc1B; J1C=JgC+Jc1C; %Сложение источников тока около ёмкости 1

J2A=Jc2A+JeA; J2B=Jc2B+JeB; J2C=Jc2C+JeC; %Сложение источников тока около ёмкости 2

E1A=J1A.*Rc1; E1B=J1B.*Rc1; E1C=J1C.*Rc1; %Эквивалентное преобразование источников около ёмкости 1

E2A=J2A.*Rc2; E2B=J2B.*Rc2; E2C=J2C.*Rc2; %Эквивалентное преобразование источников около ёмкости 2

Ес3А=Uc3A+ic3A*Rc3A; Еc3B=Uc3B+ic3B*Rc3B; Еc3C=Uc3C+ic3C*Rc3C; %Величины источников ЭДС дискретных моделей 3х ёмкостей для трёх фаз Еc4A=Uc4A+ic4A*Rc4A; Еc4B=Uc4B+ic4B*Rc4B; Еc4C=Uc4C+ic4C*Rc4C; %Величины источников ЭДС дискретных моделей 4х ёмкостей для трёх фаз
Ec5A=Uc5A+ic5A*Rc5A; Ec5B=Uc5B+ic5B*Rc5B; Ec5C=Uc5C+ic5C*Rc5C; %Величины источников ЭДС дискретных моделей 5х ёмкостей для трёх фаз

Ec6A=Uc6A+ic6A*Rc6A; Ec6B=Uc6B+ic6B*Rc6B; Ec6C=Uc6C+ic6C*Rc6C;

%Величины источников ЭДС дискретных моделей 5х ёмкостей для трёх фаз

% Б) СЧИТЫВАНИЕ ПАРАМЕТРОВ РЕЖИМА

IgA=pdIgA.IgA(k)./sqrt(2); IgB=pdIgB.IgB(k)./sqrt(2); IgC=pdIgC.IgC(k)./sqrt(2); %Модули действующих значений токов в жилах

IeA=pdIeA.IeA(k)./sqrt(2); IeB=pdIeB.IeB(k)./sqrt(2); IeC=pdIeC.IeC(k)./sqrt(2); %Модули действующих значений токов в экранах

TeA=pdTA.TAe(k); TeB=pdTB.TBe(k); TeC=pdTC.TCe(k); %Температуры в экранах

Evn=10; %Внешняя температура

% В) РАСЧЁТ ДИСКРЕТНОЙ МОДЕЛИ

%Текущие значения потенциалов и токов в ёмкостях С1 и С2

Uc1A=pdTA.TAe(k)-(pdTA.TAe(k)-E1A).*Rti./(Rc1+Rti); Uc1B=pdTB.TBe(k)-

(pdTB.TBe(k)-E1B).*Rti./(Rc1+Rti); Uc1C=pdTC.TCe(k)-(pdTC.TCe(k)-

E1C).*Rti./(Rc1+Rti);

Uc11A(k)=Uc1A; Uc11B(k)=Uc1B; Uc11C(k)=Uc1C;

ic1A=JgA+(pdTA.TAe(k)-E1A)./(Rc1+Rti); ic1B=JgB+(pdTB.TBe(k)-E1B)./(Rc1+Rti);

ic1C=JgC+(pdTC.TCe(k)-E1C)./(Rc1+Rti);

```
Uc2A=TeA; Uc2B=TeB; Uc2C=TeC;
```

```
Uc22A(k)=Uc2A; Uc22B(k)=Uc2B; Uc22C(k)=Uc2C;
```

```
ic2A=(Uc2A-Jc2A.*Rc2)./Rc2; ic2B=(Uc2B-Jc2B.*Rc2)./Rc2; ic2C=(Uc2C-
```

Jc2C.*Rc2)./Rc2;

%Узловая матрица тепловых проводимостей для фазы "А"

DA=[1/Rto+1/Rc3A+1/Rtg1A -1/Rtg1A 0 0;

-1/Rtg1A 2/Rtg1A+1/Rc4A -1/Rtg1A 0;

0 -1/Rtg1A 2/Rtg1A+1/Rc5A -1/Rtg1A;

0 0 -1/Rtg1A 2/Rtg1A+1/Rc6A;];

% Матрица праввых частей уравнений по методу узловых потенциалов для фазы "А"

EA = [pdTA.TAe(k)/Rto + Ec3A/Rc3A; Ec4A/Rc4A; Ec5A/Rc5A; Ec6A/Rc6A + Evn/Rtg1A;];

%Узловая матрица тепловых проводимостей для фазы "А"

DB=[1/Rto+1/Rc3B+1/Rtg1B -1/Rtg1B 0 0;

-1/Rtg1B 2/Rtg1B+1/Rc4B -1/Rtg1B 0;

0 -1/Rtg1B 2/Rtg1B+1/Rc5B -1/Rtg1B;

0 0 -1/Rtg1B 2/Rtg1B+1/Rc6B;];

%Матрица праввых частей уравнений по методу узловых потенциалов для фазы "A" EB=[pdTB.TBe(k)/Rto+Ec3B/Rc3B; Ec4B/Rc4B; Ec5B/Rc5B; Ec6B/Rc6B+Evn/Rtg1B;]; %Узловая матрица тепловых проводимостей для фазы "A"

DC=[1/Rto+1/Rc3C+1/Rtg1C -1/Rtg1C 0 0;

-1/Rtg1C 2/Rtg1C+1/Rc4C -1/Rtg1C 0;

0 -1/Rtg1C 2/Rtg1C+1/Rc5C -1/Rtg1C;

0 0 -1/Rtg1C 2/Rtg1C+1/Rc6C;];

%Матрица праввых частей уравнений по методу узловых потенциалов для фазы "A" EC=[pdTC.TCe(k)/Rto+Ec3C/Rc3C; Ec4C/Rc4C; Ec5C/Rc5C; Ec6C/Rc6C+Evn/Rtg1C;]; fiA=DA\EA; fiB=DB\EB; fiC=DC\EC; %Тепловые потенциалы в узлах 2-5, 6-10, 12-15 дискретных моделей тепловых схем замещения для эквивалентных грунтов

%Текущие значения тепловых потоков в ёмкостях

ic3A=(fiA(1)-Ec3A)/Rc3A;	ic3B=(fiB(1)-Ec3B)/Rc3B;	ic3C=(fiC(1)-Ec3C)/Rc3C;
ic4A=(fiA(2)-Ec4A)/Rc4A;	ic4B=(fiB(2)-Ec4B)/Rc4B;	ic4C=(fiC(2)-Ec4C)/Rc4C;
ic5A=(fiA(3)-Ec5A)/Rc5A;	ic5B=(fiB(3)-Ec5B)/Rc5B;	ic5C=(fiC(3)-Ec5C)/Rc5C;
ic6A=(fiA(4)-Ec6A)/Rc6A;	ic6B=(fiB(4)-Ec6B)/Rc6B;	ic6C=(fiC(4)-Ec6C)/Rc6C;

%Текущие значения тепловых потенциалов на ёмкостях

Uc3A=fiA(1); Uc3B=fiB(1); Uc3C=fiC(1);

Uc33A(k)=Uc3A; Uc33B(k)=Uc3B; Uc33C(k)=Uc3C;

Uc4A=fiA(2); Uc4B=fiB(2); Uc4C=fiC(2);

Uc44A(k)=Uc4A; Uc44B(k)=Uc4B; Uc44C(k)=Uc4C;

Uc5A=fiA(3); Uc5B=fiB(3); Uc5C=fiC(3);

Uc6A=fiA(4); Uc6B=fiB(4); Uc6C=fiC(4);

% Г) РАСЧЁТ ТЕПЛОВЫДЕЛЕНИЙ С УЧЁТОМ ЭФФЕКТА БЛИЗОСТИ,

ПОВЕРХНОСТНОГО ЭФФЕКТА И ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА СОПРОТИВЛЕНИЯ

 $x_sgA = sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(Uc1A-20))));$

 $x_sgB = sqrt(8*pi*f*k_sg*(10^{-7})/(Rg_*(1+alfaCu*(Uc1B-20))));$

 $x_sgC = sqrt(8*pi*f*k_sg*(10^{-7})/(Rg_*(1+alfaCu*(Uc1C-20))));$

фазы "С"

y peB=(x peB^4)/(192+0.8*x peB^4)*($(2*r3/D)^2$)*(0.312*(2*r3/D)^2+1.18/((x peB^4)/(1 peB^4)))*(0.312*(2*r3/D)^2)*(0.3*r3/D)* 92+0.8*x_peB^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "В" $y_peC = (x_peC^4)/(192+0.8*x_peC^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+$ 1.18/((x_peC^4)/(192+0.8*x_peC^4)+0.27)); %Коэффициент эффекта близости для экрана

y peA=(x peA^4)/(192+0.8*x peA^4)*($(2*r3/(D*sqrt(2)))^2$)*(0.312*(2*r3/(D*sqrt(2)))^2+ 1.18/((x peA^4)/(192+0.8*x peA^4)+0.27)); %Коэффициент эффекта близости для экрана фазы "А"

 $y_pgC = (x_pgC^4)/(192+0.8*x_pgC^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+$ 1.18/((x_pgC^4)/(192+0.8*x_pgC^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "С"

фазы "А" $y_pgB = (x_pgB^4)/(192+0.8*x_pgB^4)*((2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(1.2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(1.2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.3*r1)$

92+0.8*x_pgB^4)+0.27)); %Коэффициент эффекта близости для жилы фазы "В"

y pgA=(x pgA^4)/(192+0.8*x pgA^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+ 1.18/((x_pgA^4)/(192+0.8*x_pgA^4)+0.27)); %Коэффициент эффекта близости для жилы

экранов фаз "А", "В" и "С" соответственно

у seC=(x seC^4)/(192+0.8*x seC^4); %Коэффициенты поверхностного эффекта для

фаз "А", "В" и "С" соответственно

 $y_sgA = (x_sgA^4)/(192+0.8*x_sgA^4); y_sgB = (x_sgB^4)/(192+0.8*x_sgB^4);$

 $y_seA = (x_seA^4)/(192+0.8*x_seA^4); y_seB = (x_seB^4)/(192+0.8*x_seB^4);$

 $y_sgC=(x_sgC^4)/(192+0.8*x_sgC^4);$ %Коэффициенты поверхностного эффекта для жил

 $x_peC = sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2C-20))));$

x peA=sqrt(8*pi*f*k pe*(10^-7)/(Re *(1+alfaCu*(Uc2A-20))));

 $x_peB=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(Uc2B-20))));$

 $x_pgC=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1C-20))));$

 $x_pgB=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1B-20))));$

 $x_pgA=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(Uc1A-20))));$

x seB=sqrt(8*pi*f*k se*(10^-7)/(Re *(1+alfaCu*(Uc2B-20)))); x seC=sqrt(8*pi*f*k se*(10^-7)/(Re *(1+alfaCu*(Uc2C-20))));

x seA=sqrt(8*pi*f*k se*(10^-7)/(Re *(1+alfaCu*(Uc2A-20))));

RgA=Rg_*(1+alfaCu*(Uc1A-20))*(1+y_sgA+y_pgA); %Активное сопротивление жилы фазы "А" переменному току при текущей температуре

RgB=Rg_*(1+alfaCu*(Uc1B-20))*(1+y_sgB+y_pgB); %Активное сопротивление жилы фазы "В" переменному току при текущей температуре

RgC=Rg_*(1+alfaCu*(Uc1C-20))*(1+y_sgC+y_pgC); %Активное сопротивление жилы фазы "С" переменному току при текущей температуре

ReA=Re_*(1+alfaCu*(Uc2A-20))*(1+y_seA+y_peA); %Активное сопротивление экрана фазы "А" переменному току при текущей температуре

ReB=Re_*(1+alfaCu*(Uc2B-20))*(1+y_seB+y_peB); %Активное сопротивление экрана фазы "А" переменному току при текущей температуре

ReC=Re_*(1+alfaCu*(Uc2C-20))*(1+y_seC+y_peC); %Активное сопротивление экрана фазы "А" переменному току при текущей температуре

JgA=IgA^2*RgA; JgB=IgB^2*RgB; JgC=IgC^2*RgC; %Тепловыделения в жилах JeA=IeA^2*ReA; JeB=IeB^2*ReB; JeC=IeC^2*ReC; %Тепловыделения в экранах end

%Расчёт погрешностей

DgAComs=pdTA.TAg-Uc11A; DeAComs=pdTA.TAe-Uc22A; %Погрешности расчёта температур жилы и экрана в режиме реального времени для фазы "А"

DgBComs=pdTB.TBg-Uc11B; DeBComs=pdTB.TBe-Uc22B; %Погрешности расчёта температур жилы и экрана в режиме реального времени для фазы "В"

DgCComs=pdTC.TCg-Uc11C; DeCComs=pdTC.TCe-Uc22C; %Погрешности расчёта температур жилы и экрана в режиме реального времени для фазы "С"

DgAprComs=pdTA.TAg-TgApr; DeAprComs=pdTA.TAe-TeApr; %Погрешности

прогноза температур жилы и экрана в режиме реального времени для фазы "А"

DgBprComs=pdTB.TBg-TgBpr; DeBprComs=pdTB.TBe-TeBpr; %Погрешности прогноза температур жилы и экрана в режиме реального времени для фазы "В"

DgCprComs=pdTC.TCg-TgCpr; DeCprComs=pdTC.TCe-TeCpr; %Погрешности прогноза температур жилы и экрана в режиме реального времени для фазы "С"

<u>%% IX ВЫВОД РЕЗУЛЬТАТОВ</u>

%% Φa3a "A" figure hold on plot(tt./86400,Uc11A,'r--',tt./86400,Uc22A,'b--') plot(tt./86400,pdTA.TAg,'r',tt./86400,pdTA.TAe,'b') plot(tt./86400,Uc44A,'k') grid on title('Температура жилы и экрана фазы "А"') figure plot(tt./86400,DgAComs,'r',tt./86400,DeAComs,'b') grid on title('Погешость для фазы "А"') figure plot(tt1./86400,TgApr,'r--',tt1./86400,TeApr,'b--',tt./86400,pdTA.TAg,'r',tt./86400,pdTA.TAe,'b') grid on title('Температура жилы и экрана (прогноз) фазы "А"') figure plot(tt./86400,DgAprComs,'r',tt./86400,DeAprComs,'b') grid on title('Погешость для прогноза фазы "А"') %% Фаза "В" figure hold on plot(tt./86400,Uc11B,'r--',tt./86400,Uc22B,'b--') plot(tt./86400,pdTB.TBg,'r',tt./86400,pdTB.TBe,'b') plot(tt./86400,Uc44B,'k') grid on title('Температура жилы и экрана фазы "В"') figure plot(tt./86400,DgBComs,'r',tt./86400,DeBComs,'b') grid on title('Погешость для фазы "В"') figure

77

```
plot(tt1./86400,TgBpr,'r--',tt1./86400,TeBpr,'b--
',tt./86400,pdTB.TBg,'r',tt./86400,pdTB.TBe,'b')
grid on
title('Температура жилы и экрана (прогноз) фазы "В")
figure
plot(tt./86400,DgBprComs,'r',tt./86400,DeBprComs,'b')
grid on
title('Погешость для прогноза фазы "В"')
%% Фаза "С"
figure
hold on
plot(tt./86400,Uc11C,'r--',tt./86400,Uc22C,'b--')
plot(tt./86400,pdTC.TCg,'r',tt./86400,pdTC.TCe,'b')
plot(tt./86400,Uc44C,'k')
grid on
title('Температура жилы и экрана фазы "С"')
figure
plot(tt./86400,DgCComs,'r',tt./86400,DeCComs,'b')
grid on
title('Погешость для фазы "С"')
figure
plot(tt1./86400,TgCpr,'r--',tt1./86400,TeCpr,'b--
',tt./86400,pdTC.TCg,'r',tt./86400,pdTC.TCe,'b')
grid on
title('Температура жилы и экрана (прогноз) фазы "С")
figure
plot(tt./86400,DgCprComs,'r',tt./86400,DeCprComs,'b')
grid on
title('Погешость для прогноза фазы "С"')
```

Приложение Н

(обязательное)

Математический алгоритм для расчёта температур жил и оценки допустимой токовой нагрузки КЛ, написанный в программе MATLAB

%% 1. ВВОД ИСХОДНЫХ ДАННЫХ

f=50; %Частота тока, Гц

%Параметры жилы

r1=0.0428/2; %Радиус жилы, м

gammaCu=58100000; %Удельная электрическая проводимость, См/м

alfaCu=0.0039; %Температурный коэффициент сопротивления меди, 1/К

сси=384.18; %Удельная теплоемкость меди, Дж/(кг*К)

Plcu=8960; %Плотность меди, кг/м^3

Sg_Cu=0.0012; %Площадь сечения меди в жиле (по каталогу), мм²

k_sg=1; %Коэффициент влияния конструкции жилы на поверхностный эффект

k_pg=1; %Коэффициент влияния конструкции жилы на эффект близости

%Параметры изоляции

r2=0.0938/2; %Наружный радиус внутренней изоляции, м

lymda_pe=0.235; %Удельная теплопроводность полиэтилена, Вт/(м*К)

Plpe=930; %Плотность полиэтилена, кг/м^3

сре=2350; %Удельная теплоемкость полиэтилена, Дж/(кг*К)

%Параметры экрана

r3=0.0978/2;% Наружный радиус экрана, м

Se_Cu=0.000095; %Площадь сечения меди в экране (по каталогу), мм^2

k_se=((r3-r2)/(r3+r2))*(((r3+2*r2)/(r3+r2))^2); %Коэффициент влияния конструкции экрана на поверхностный эффект

k_pe=0.8; %Коэффициент влияния конструкции экрана на эффект близости

%Параметры оболочки

r4=0.1118/2;% Наружный радиус внешней изоляции, м

%Параметры грунта

lymda_Gr=1; %Теплопроводность грунта, Вт/(м*К)

tauA=260,82081811/20*86400;%Постоянная времени нагрева для фазы "А"

(приблизительная)

tauB=255,119/20*86400;%Постоянная времени нагрева для фазы "В" (приблизительная) tauC=tauA; %Постоянные времени нагрева для фазы "С" (приблизительная)

D=0.1118*2; %Расстояние между центрами жил соседних кабелей

L=1.5;%Глубина прокладки кабелей

h=864; T1=180*86400; %Установка шага по времени и предела по времени

m=86400/h; %количество измерений в сутки (эта величина нужна для усреднения

измерямых показателей за сутки)

k=1; i=1; n=1; %различные индексы

D=0.1118*2; %Расстояние между центрами жил соседних кабелей

T0=10; %Внешняя температура грунта (зависит от сезона: летом 15 гр.Ц. зимой 5 гр.Ц. можно привязать к календарю (есть специальные таблицы зависимости температуры от глубины и месяца для различных городов России))

% ОБНУЛЕНИЕ МАССИВОВ

tt1=0; tt=0; %массивы времени

TeASum=0; TeBSum=0; TeCSum=0; %Массивы суммарных температур за сутки

TeAmid=0; TeBmid=0; TeCmid=0; %Массивы средних значений температур за каждые сутки

PgAmid=0; PgBmid=0; PgCmid=0; %Массивы средних значений тепловыделений в жилах за каждые сутки

PeAmid=0; PeBmid=0; PeCmid=0; %Массивы средних значений тепловыделений в экранах за каждые сутки

kASum=0; kBSum=0; kCSum=0; %Массивы суммарных значений коэффициентов токов в экранах за каждые сутки (это отношение тока в экране к току в жиле)

kAmid=0; kBmid=0; kCmid=0; %Массивы средних значений коэффициентов токов в экранах за каждые сутки (это отношение тока в экране к току в жиле)

PgASum=0; PgBSum=0; PgCSum=0; %Массивы суммарных значений тепловыделений в жилах за прошлые сутки

PeASum=0; PeBSum=0; PeCSum=0; %Массивы суммарных значений тепловыделений в экранах за прошлые сутки

RtgrA=0; RtgrB=0; RtgrC=0; %Массивы значений тепловых сопротивлений грунта тепловым потокам от фаз

IgAdop=0; IgBdop=0; IgCdop=0; %Массивы значений допустимых токов в фазах

TgA1=0; TgB1=0; TgC1=0; %Массивы значений температур жил

PgA1=0; PgB1=0; PgC1=0; %Массивы тепловыделений в жилах

<u>%% 2. РАСЧЁТ ПАРАМЕТРОВ МОДЕЛИ</u>

%Расчёт активного сопротивления жилы постоянному току с учётом коэффициента заполнения

Sg=pi*r1^2; %Общая площадь сечения жилы, мм^2

Se=pi*(r3^2-r2^2);%Общая площадь сечения экрана, мм^2

gamma_g_ekv=gammaCu*Sg_Cu/Sg; %Эквивалентная электрическая проводимость

жилы при температуре 20 гр. Цельсия, См/м

gamma_e_ekv=gammaCu*Se_Cu/Se;%Эквивалентная электрическая проводимость экрана, См/м

Rg_=1/(gamma_g_ekv*Sg); %Сопротивление жилы постоянному току при температуре 20 гр. Цельсия, Ом/м

Re_=1/(gamma_e_ekv*Se);%Сопротивление экрана постоянному току при температуре 20 гр.Ц

%Расчёт параметров тепловой схемы замещения

r12=sqrt(r1*r2); %Промежуточный радиус изоляции, м

```
Rti=log(r12/r1)/(2*pi*lymda_pe); %Тепловое сопротивление 1 из 2 слоёв изоляции, 
Вт/(м*К)
```

Rto=log(r4/r3)/(2*pi*lymda_pe); %Тепловое сопротивление внешней оболочки

Cg=ccu*Plcu*pi*r1^2; %Теплоёмкость жилы, Дж/(м*К)

Ci1=cpe*Plpe*pi*(r12^2-r1^2); %Тепловая ёмкость первого слоя изоляции, Дж/(м*К)

Ci2=cpe*Plpe*pi*(r2^2-r12^2); %Тепловая ёмкость второго слоя изоляции, Дж/(м*К)

pwi=1/(2*log(r12/r1))-1/((r12/r1)^2-1); %Коэффициент Ван-Вормера для изоляции, отн. ед.

C1=Cg+pwi*Ci1; %Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

C2=(1-pwi)*Ci1+pwi*Ci2; %Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

%Расчёт начальных значений сопротивлений грунта для каждой фазы

dAB=4*r4; %Расстояние между фазами "А" и "В"

dAC=8*r4; %Расстояние между фазами "А" и "С"

dBC=4*r4; %Расстояние между фазами "В" и "С"

dAiB=sqrt(dAB^2+4*L^2); %Расстояние между фазой "А" и зеркальным изображением фазы "В"

dAiC=sqrt(dAC^2+4*L^2); %Расстояние между фазой "А" и зеркальным изображением фазы "С"

dBiC=sqrt(dBC^2+4*L^2); %Расстояние между фазой "В" и зеркальным изображением фазы "С"

 $RtgrA(n) = (1/(2*pi*lymda_Gr))*log((L/r4+sqrt((L/r4)^{2}-1))*(dAiB/dAB)*(dAiC/dAC));$

%Начальное значение теплового сопротивления грунта тепловому потоку от оболочки фазы "А"

 $RtgrB(n) = (1/(2*pi*lymda_Gr))*log((L/r4+sqrt((L/r4)^2-1))*(dAiB/dAB)*(dAiB/dAB));$

%Начальное значение теплового сопротивления грунта тепловому потоку от оболочки фазы "В"

```
RtgrC(n) = (1/(2*pi*lymda_Gr))*log((L/r4+sqrt((L/r4)^{2}-1))*(dBiC/dBC)*(dAiC/dAC));
```

%Начальное значение теплового сопротивления грунта тепловому потоку от оболочки фазы "С"

%(Эти сопротивления расчитаны по методике IEC 60287. Далее их значения будут уточняться на основе измерямых параметров в реальном времени.)

%% 3. СЧИТЫВАНИЕ ПАРАМЕТРОВ РЕЖИМА

IgA=pdIgA.IgA(k)./sqrt(2); IgB=pdIgB.IgB(k)./sqrt(2); IgC=pdIgC.IgC(k)./sqrt(2); %Модули действующих значений токов в жилах

IeA=pdIeA.IeA(k)./sqrt(2); IeB=pdIeB.IeB(k)./sqrt(2); IeC=pdIeC.IeC(k)./sqrt(2);

TsA=pdTA.TAe(k); TsB=pdTB.TBe(k); TsC=pdTC.TCe(k); %Начальные значения температур экранов кабелей

%% 4. РАСЧЕТ ТЕПЛОВЫДЕЛЕНИЯ И НАЧАЛЬНЫХ УСЛОВИЙ

PgA0=0; PgB0=0; PgC0=0; %Начальные тепловыделения в жилах (0-)

TgA=TsA+PgA0*2*Rti; TgB=TsB+PgB0*2*Rti; TgC=TsC+PgC0*2*Rti; %Температурs жил в начальный момент времени (0-)

TgA1(k)=TgA; TgB1(k)=TgB; TgC1(k)=TgC; %Запись с общий массив данных

Uc2A=TsA+PgA0*Rti; Uc2B=TsB+PgB0*Rti; Uc2C=TsC+PgC0*Rti; %Потенциал на второй ёмкости в исходной схеме замещения, К

%Расчёт активных сопротивлений переменному току с учётом температурного

коэффициента сопротивления

x_sgA=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgA-20))));

 $x_sgB=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgB-20))));$

x_sgC=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgC-20)))); %Промежуточный

коэффициент

 $x_seA = sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(TsA-20))));$

 $x_seB=sqrt(8*pi*f*k_se*(10^{-7})/(Re_*(1+alfaCu*(TsB-20))));$

x_seC=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(TsC-20)))); %Промежуточный

коэффициент

 $x_pgA=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgA-20))));$

 $x_pgB=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgB-20))));$

x_pgC=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgC-20)))); %Промежуточный

коэффициент

x peA=sqrt(8*pi*f*k pe*(10^-7)/(Re *(1+alfaCu*(TsA-20))));

x peB=sqrt(8*pi*f*k pe*(10^-7)/(Re *(1+alfaCu*(TsB-20))));

x_peC=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(TsC-20)))); %Промежуточный

коэффициент

 $y_sgA = (x_sgA^4)/(192+0.8*x_sgA^4); y_sgB = (x_sgB^4)/(192+0.8*x_sgB^4);$

 $y_sgC=(x_sgC^4)/(192+0.8*x_sgC^4);$ %Коэффициенты поверхностного эффекта в жиле

 $y_seA = (x_seA^4)/(192+0.8*x_seA^4); y_seB = (x_seB^4)/(192+0.8*x_seB^4);$

 $y_seC = (x_seC^4)/(192+0.8*x_seC^4);$ %Коэффициенты поверхностного эффекта в экране

 $y_pgA = (x_pgA^4)/(192+0.8*x_pgA^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+(0.312*(2*r1/(D*sqrt(2)))^2))$

1.18/((x pgA^4)/(192+0.8*x pgA^4)+0.27)); %Коэффициент эффекта близости в жиле

фазы "А"

```
y_pgB = (x_pgB^4)/(192+0.8*x_pgB^4)*((2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(1.2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(1.2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.312*(2*r1/D)^2)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0.3*r1/D)*(0
92+0.8*x_pgB^4)+0.27)); %Коэффициент эффекта близости в жиле фазы "В"
```

 $y_pgC = (x_pgC^4)/(192+0.8*x_pgC^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+(0.312*(2*r1/(D*sqrt(2)))^2))$

1.18/((x_pgC^4)/(192+0.8*x_pgC^4)+0.27)); %Коэффициент эффекта близости в жиле фазы "С"

y_peA=(x_peA^4)/(192+0.8*x_peA^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+ 1.18/((x_peA^4)/(192+0.8*x_peA^4)+0.27)); %Коэффициент эффекта близости в экране фазы "А"

у_peB=(x_peB^4)/(192+0.8*x_peB^4)*((2*r3/D)^2)*(0.312*(2*r3/D)^2+1.18/((x_peB^4)/(1 92+0.8*x_peB^4)+0.27));%Коэффициент эффекта близости в экране фазы "В"

 $y_{peC} = (x_{peC^{4}})/(192 + 0.8*x_{peC^{4}})*((2*r3/(D*sqrt(2)))^{2})*(0.312*(2*r3/(D*sqrt(2)))^{2} + 0.5))$

1.18/((x_peC^4)/(192+0.8*x_peC^4)+0.27)); %Коэффициент эффекта близости в экране фазы "С"

RgA=Rg_*(1+alfaCu*(TgA-20))*(1+y_sgA+y_pgA); %Активное сопротивление жилы переменному току, Ом/м

RgB=Rg_*(1+alfaCu*(TgB-20))*(1+y_sgB+y_pgB); %Активное сопротивление жилы переменному току, Ом/м

RgC=Rg_*(1+alfaCu*(TgC-20))*(1+y_sgC+y_pgC); %Активное сопротивление жилы переменному току, Ом/м

ReA=Re_*(1+alfaCu*(TsA-20))*(1+y_seA+y_peA);%Активное сопротивление экрана переменному току при температуре 20 гр.Ц.

ReB=Re_*(1+alfaCu*(TsB-20))*(1+y_seB+y_peB);%Активное сопротивление экрана переменному току при температуре 20 гр.Ц.

ReC=Re_*(1+alfaCu*(TsC-20))*(1+y_seC+y_peC);%Активное сопротивление экрана переменному току при температуре 20 гр.Ц.

%Расчёт тепловыделений и начальных токов в ёмкостях

PgA=IgA^2*RgA; PgB=IgB^2*RgB; PgC=IgC^2*RgC;

ic1A=PgA; ic1B=PgB; ic1C=PgB;

ic2A=0; ic2B=0; ic2C=0;

%Расчёт сопротивлений дискретной модели

Rc1=h/(2*C1); %для ёмкости 1

Rc2=h/(2*C2); %для ёмкости 2

<u>%% 5. РАСЧЁТ НАЧАЛЬНЫХ ЗНАЧЕНИЙ ДОПУСТИМЫХ ТОКОВ (ПО ІЕС</u> <u>60287)</u>

%Расчёт активных сопротивлений переменному току с учётом температурного коэффициента сопротивления при температуре 90 гр. Цельсия

x_sgAm=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*70))); x_sgBm=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*70))); x_sgCm=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*70)));

%Промежуточный коэффициент

 $x_seAm = sqrt(8*pi*f*k_se*(10^{-7})/(Re_*(1+alfaCu*70))); x_seBm = sqrt(8*pi*f*k_se*(10^{-1})); x_seBm = s$

 $7)/(Re_*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70))); x_seCm=sqrt(8*pi*f*k_se*(1+alfaCu*70)))$

%Промежуточный коэффициент

x_pgAm=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*70))); x_pgBm=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*70))); x_pgCm=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*70)));

%Промежуточный коэффициент

x_peAm=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*70))); x_peBm=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*70))); x_peCm=sqrt(8*pi*f*k_pe*(10^-

7)/(Re_*(1+alfaCu*70)));%Промежуточный коэффициент

y_sgAm=(x_sgAm^4)/(192+0.8*x_sgAm^4); y_sgBm=(x_sgBm^4)/(192+0.8*x_sgBm^4);

y_sgCm=(x_sgCm^4)/(192+0.8*x_sgCm^4); %Коэффициенты поверхностного эффекта в жиле

 $y_{seAm} = (x_{seAm^{4}})/(192 + 0.8 * x_{seAm^{4}}); y_{seBm} = (x_{seBm^{4}})/(192 + 0.8 * x_{seBm^{4}});$

y_seCm=(x_seCm^4)/(192+0.8*x_seCm^4); %Коэффициенты поверхностного эффекта в экране

у_pgAm=(x_pgAm^4)/(192+0.8*x_pgAm^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+1.18/((x_pgAm^4)/(192+0.8*x_pgAm^4)+0.27)); %Коэффициент эффекта близости в жиле фазы "А"

y_pgBm=(x_pgBm^4)/(192+0.8*x_pgBm^4)*((2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB m^4)/(192+0.8*x_pgBm^4)+0.27)); %Коэффициент эффекта близости в жиле фазы "В" y_pgCm=(x_pgCm^4)/(192+0.8*x_pgCm^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2))))*(0.312*(2*r1/(D*sqrt(2)))*(0.312*(2*r1/(D*sqrt(2))

))^2+1.18/((x_pgCm^4)/(192+0.8*x_pgCm^4)+0.27)); %Коэффициент эффекта близости в жиле фазы "С"

у_peAm=(x_peAm^4)/(192+0.8*x_peAm^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+1.18/((x_peAm^4)/(192+0.8*x_peAm^4)+0.27)); %Коэффициент эффекта близости в экране фазы "А"

y_peBm=(x_peBm^4)/(192+0.8*x_peBm^4)*((2*r3/D)^2)*(0.312*(2*r3/D)^2+1.18/((x_peB m^4)/(192+0.8*x_peBm^4)+0.27));%Коэффициент эффекта близости в экране фазы "В"

у_peCm=(x_peCm^4)/(192+0.8*x_peCm^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+1.18/((x_peCm^4)/(192+0.8*x_peCm^4)+0.27)); %Коэффициент эффекта близости в экране фазы "С"

RgAm=Rg_*(1+alfaCu*70)*(1+y_sgAm+y_pgAm); %Активное сопротивление жилы переменному току при температуре 90 гр.Ц., Ом/м

RgBm=Rg_*(1+alfaCu*70)*(1+y_sgBm+y_pgBm); %Активное сопротивление жилы переменному току при температуре 90 гр.Ц., Ом/м

RgCm=Rg_*(1+alfaCu*70)*(1+y_sgCm+y_pgCm); %Активное сопротивление жилы переменному току при температуре 90 гр.Ц., Ом/м

ReAm=Re_*(1+alfaCu*70)*(1+y_seAm+y_peAm); %Активное сопротивление экрана переменному току при температуре 90 гр.Ц., Ом/м

ReBm=Re_*(1+alfaCu*70)*(1+y_seBm+y_peBm); %Активное сопротивление экрана переменному току при температуре 90 гр.Ц., Ом/м

ReCm=Re_*(1+alfaCu*70)*(1+y_seCm+y_peCm); %Активное сопротивление экрана переменному току при температуре 90 гр.Ц., Ом/м

%Расчё начальных допустимых токов

kA(n)=IeA/IgA; kB(n)=IeB/IgB; kC(n)=IeC/IgC; %Предварительные значения

коэффициентов токов в экранах

IgAdop(n)=sqrt((90-T0)/(kA(n)^2*ReAm*(Rto+RtgrA(n))+RgAm*(2*Rti+Rto+RtgrA(n)))); %Начальное значение допустимого тока жилвы фазы "А"

```
IgBdop(n) = sqrt((90-T0)/(kB(n)^2 * ReBm*(Rto+RtgrB(n)) + RgBm*(2*Rti+Rto+RtgrB(n))));
```

```
%Начальное значение допустимого тока жилвы фазы "В"
```

```
IgCdop(n) = sqrt((90-T0)/(kC(n)^2 * ReCm^*(Rto + RtgrC(n)) + RgCm^*(2 * Rti + Rto + RtgrC(n))));
```

%Начальное значение допустимого тока жилвы фазы "С"

```
Igdop(n)=(IgAdop(n)+IgBdop(n)+IgCdop(n))/3; %Начальное среднее значение
```

допустимого тока для трёх фаз

```
%(Эти токи расчитаны по методике IEC 60287. Далее их значения будут уточняться на основе измерямых параметров в реальном времени.
```

```
TeASum(k)=TsA; TeBSum(k)=TsB; TeCSum(k)=TsC; %Начальные значения
сумманрых температур в экранах за сутки
kASum(k)=IeA/IgA; kBSum(k)=IeB/IgB; kCSum(k)=IeC/IgC; %Начальные значения
суммарных коэффициентов токов в экранах
```

PgASum(k)=IgA^2*RgA; PgBSum(k)=IgB^2*RgB; PgCSum(k)=IgC^2*RgC;

%Начальные значения суммарных тепловыделений в жилах за прошлые сутки

PeASum(k)=IeA^2*ReA; PeBSum(k)=IeB^2*ReB; PeCSum(k)=IeC^2*ReC; %Начальные значения суммарных тепловыделений в экранах за прошлые сутки

<u>%% 6. ЦИКЛ РАСЧЁТА МОДЕЛИ (в реальности он не должен заканчиваться, а</u>

<u>здесь он конечен)</u>

for t=h:h:T1

k=k+1; %Счётчик шагов

i=i+1; %Счётчик шагов за одни сутки

tt(k)=t; %Запись текущего времени в общий массив

%% 6.1. СЧИТЫВАНИЕ ПАРАМЕТРОВ РЕЖИМА

IgA=pdIgA.IgA(k)./sqrt(2); IgB=pdIgB.IgB(k)./sqrt(2); IgC=pdIgC.IgC(k)./sqrt(2); %Модули действующих значений токов в жилах

IeA=pdIeA.IeA(k)./sqrt(2); IeB=pdIeB.IeB(k)./sqrt(2); IeC=pdIeC.IeC(k)./sqrt(2); %Модули действующих значений токов в экранах

TsA=pdTA.TAe(k); TsB=pdTB.TBe(k); TsC=pdTC.TCe(k);%Значения температур экранов кабелей

<u>%% 6.2. РАСЧЁТ ТЕМПЕРАТУР ЖИЛ НА ТЕКУЩЕМ ШАГЕ</u> ИНТЕГРИРОВАНИЯ

% Расчёт источников дискретной модели

Jc1A=TgA./Rc1+ic1A; Jc1B=TgB./Rc1+ic1B; Jc1C=TgC./Rc1+ic1C; %Величины

источников теплового потока в дискретной модели ёмкости С1, Вт/м

```
J1A=Jc1A+PgA; J1B=Jc1B+PgB; J1C=Jc1C+PgC; %Сложение источников
```

теплового потока, параллельных ёмкости С1

```
Ec2A=Uc2A+ic2A.*Rc2; Ec2B=Uc2B+ic2B.*Rc2; Ec2C=Uc2C+ic2C.*Rc2; %Величины
```

источников температуры дискретных моделей ёмкости С2, К

E1A=J1A.*Rc1; E1B=J1B.*Rc1; E1C=J1C.*Rc1; %Эквивалентное

преобразование источников теплового потока в источники температуры

%Расчёт модели

fiA=(E1A./(Rc1+Rti)+Ec2A./Rc2+TsA./Rti)./(1./(Rc1+Rti)+1./Rc2+1./Rti); %Текущий потенциал на ёмкости С2 для фазы "А", К

fiC=(E1C./(Rc1+Rti)+Ec2C./Rc2+TsC./Rti)./(1./(Rc1+Rti)+1./Rc2+1./Rti); %Текущий потенциал на ёмкости С2 для фазы "С", К

ic1A=PgA+(fiA-E1A)./(Rc1+Rti); %Текущий тепловой поток на С1 для фазы "А", Вт/м

ic1B=PgB+(fiB-E1B)./(Rc1+Rti); %Текущий тепловой поток на С1 для фазы "В", Вт/м

ic1C=PgC+(fiC-E1C)./(Rc1+Rti); %Текущий тепловой поток на С1 для фазы "С", Вт/м

ic2A=(fiA-Ec2A)./Rc2; %Текущий тепловой поток на C2 для фазы "А", Вт/м

ic2B=(fiB-Ec2B)./Rc2; %Текущий тепловой поток на C2 для фазы "В", Вт/м

ic2C=(fiC-Ec2C)./Rc2; %Текущий тепловой поток на C2 для фазы "С", Вт/м

TgA=fiA-((fiA-E1A).*Rti)./(Rc1+Rti); %Текущая температура жилы фазы "А", К

TgB=fiB-((fiB-E1B).*Rti)./(Rc1+Rti); %Текущая температура жилы фазы "В", К

TgC=fiC-((fiC-E1C).*Rti)./(Rc1+Rti); %Текущая температура жилы фазы "С", К

TgA1(k)=TgA; TgB1(k)=TgB; TgC1(k)=TgC; %Запись температур жил в общие массивы данных

Uc2A=fiA; Uc2B=fiB; Uc2C=fiC; %Потенциал на C2 для текущего шага интегрирования %% 6.3. РАСЧЁТ КОЭФФИЦИЕНТОВ ТОКА В ЭКРАНАХ,

<u>ТЕПЛОВЫДЕЛЕНИЙ В ЖИЛАХ И ЭКРАНАХ С УЧЁТОМ ТЕМПЕРАТУРНОГО</u> КОЭФФИЦИЕНТА СОПРОТИВЛЕНИЯ

kA=IeA/IgA; kB=IeB/IgB; kC=IeC/IgC; %Предварительные значения коэффициентов токов в экранах

x_sgA=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgA-20))));

x_sgB=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgB-20))));

x_sgC=sqrt(8*pi*f*k_sg*(10^-7)/(Rg_*(1+alfaCu*(TgC-20)))); %Промежуточный

коэффициент

x_seA=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(TsA-20))));

x_seB=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(TsB-20))));

```
x_seC=sqrt(8*pi*f*k_se*(10^-7)/(Re_*(1+alfaCu*(TsC-20)))); %Промежуточный
```

коэффициент

 $x_pgA = sqrt(8*pi*f*k_pg*(10^{-7})/(Rg_*(1+alfaCu*(TgA-20))));$

 $x_pgB = sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgB-20))));$

x_pgC=sqrt(8*pi*f*k_pg*(10^-7)/(Rg_*(1+alfaCu*(TgC-20)))); %Промежуточный

коэффициент

x_peA=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(TsA-20))));

x_peB=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(TsB-20))));

x_peC=sqrt(8*pi*f*k_pe*(10^-7)/(Re_*(1+alfaCu*(TsC-20)))); %Промежуточный

коэффициент

y_sgA=(x_sgA^4)/(192+0.8*x_sgA^4); y_sgB=(x_sgB^4)/(192+0.8*x_sgB^4);

y_sgC=(x_sgC^4)/(192+0.8*x_sgC^4); %Коэффициенты поверхностного эффекта в жилах

y_seA=(x_seA^4)/(192+0.8*x_seA^4); y_seB=(x_seB^4)/(192+0.8*x_seB^4);

y_seC=(x_seC^4)/(192+0.8*x_seC^4); %Коэффициенты поверхностного эффекта в экранах

 $y_pgA = (x_pgA^4)/(192+0.8*x_pgA^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+$ 1.18/((x_pgA^4)/(192+0.8*x_pgA^4)+0.27)): %Koodeduuueut oddeerta futucortu p.ytu.e

1.18/((x_pgA^4)/(192+0.8*x_pgA^4)+0.27)); %Коэффициент эффекта близости в жиле фазы "А"

y_pgB=(x_pgB^4)/(192+0.8*x_pgB^4)*((2*r1/D)^2)*(0.312*(2*r1/D)^2+1.18/((x_pgB^4)/(1 92+0.8*x_pgB^4)+0.27)); %Коэффициент эффекта близости в жиле фазы "В"

y_pgC=(x_pgC^4)/(192+0.8*x_pgC^4)*((2*r1/(D*sqrt(2)))^2)*(0.312*(2*r1/(D*sqrt(2)))^2+ 1.18/((x_pgC^4)/(192+0.8*x_pgC^4)+0.27)); %Коэффициент эффекта близости в жиле

фазы "С"

y_peA=(x_peA^4)/(192+0.8*x_peA^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+ 1.18/((x_peA^4)/(192+0.8*x_peA^4)+0.27)); %Коэффициент эффекта близости в экране

фазы "А"

 $y_{peB} = (x_{peB^{4}})/(192 + 0.8*x_{peB^{4}})*((2*r3/D)^{2})*(0.312*(2*r3/D)^{2} + 1.18/((x_{peB^{4}})/(18))*(1.18))*(0.312*(2*r3/D)^{2})*(0.312*(2*r3/D$

92+0.8*x_peB^4)+0.27)); %Коэффициент эффекта близости в экране фазы "В"

 $v_peC = (x_peC^4)/(192+0.8*x_peC^4)*((2*r3/(D*sqrt(2)))^2)*(0.312*(2*r3/(D*sqrt(2)))^2+$

1.18/((x_peC^4)/(192+0.8*x_peC^4)+0.27)); %Коэффициент эффекта близости в экране фазы "С"

RgA=Rg_*(1+alfaCu*(TgA-20))*(1+y_sgA+y_pgA); %Активное сопротивление жилы переменному току при температуре 20 гр.Ц. для фазы "А", Ом/м

RgB=Rg_*(1+alfaCu*(TgB-20))*(1+y_sgB+y_pgB); %Активное сопротивление жилы переменному току при температуре 20 гр.Ц. для фазы "В", Ом/м

RgC=Rg_*(1+alfaCu*(TgC-20))*(1+y_sgC+y_pgC); %Активное сопротивление жилы переменному току при температуре 20 гр.Ц. для фазы "С", Ом/м

ReA=Re_*(1+alfaCu*(TsA-20))*(1+y_seA+y_peA); %Активное сопротивление экрана переменному току при температуре 20 гр.Ц. для фазы "А", Ом/м

ReB=Re_*(1+alfaCu*(TsB-20))*(1+y_seB+y_peB); %Активное сопротивление экрана переменному току при температуре 20 гр.Ц. для фазы "В", Ом/м

ReC=Re_*(1+alfaCu*(TsC-20))*(1+y_seC+y_peC); %Активное сопротивление экрана переменному току при температуре 20 гр.Ц. для фазы "С", Ом/м

PgA=IgA^2*RgA; PgB=IgB^2*RgB; PgC=IgC^2*RgC; %Тепловыделения в жилах, Вт/м PeA=IeA^2*ReA; PeB=IeB^2*ReB; PeC=IeC^2*ReC; %Тепловыделения в жилах, Вт/м % 6.4. РАСЧЁТ СУММАРНЫХ ВЕЛИЧИН

TeASum(k)=TeASum(k-1)+TsA; TeBSum(k)=TeBSum(k-1)+TsB; TeCSum(k)=TeCSum(k-1)+TsC; %Текущие значения суммарных температур в экранах

kASum(k)=kASum(k-1)+kA; kBSum(k)=kBSum(k-1)+kB; kCSum(k)=kCSum(k-1)+kC; %Значения суммарных коэффициентов токов в экранах

PgASum(k)=PgASum(k-1)+PgA; PgBSum(k)=PgBSum(k-1)+PgB; PgCSum(k)=PgCSum(k-1)+PgC;%Определение средних значений тепловыделений в жилах за прошлые сутки PeASum(k)=PeASum(k-1)+PeA; PeBSum(k)=PeBSum(k-1)+PeB; PeCSum(k)=PeCSum(k-1)+PeC;%Определение средних значений тепловыделений в экранах за прошлые сутки

<u>%% 6.5. РАСЧЁТ ДОПУСТИМЫХ ТОКОВ</u>

if i == m %(Это условие означает, что прошли одни сутки и можно вычислить средние значения контролируемых параметров, а также скорректоровать значения допустимых токов в жилах)

i=0; %Это нужно, чтобы ещё через сутки опять сработало предидущее условие n=n+1; %Счётчик суток

tt1(n)=t; %запись текущего времени, при котором происходит корректировка допустимых токов

<u>%% 6.5.1. РАСЧЁТ СРЕДНИХ ВЕЛИЧИН</u>

значения коэффициентов токов в экранах за прошлые сутки

TeAmid(n)=TeASum(k)/m; TeBmid(n)=TeBSum(k)/m; TeCmid(n)=TeCSum(k)/m; %Средние значения температур экранов за прошлые сутки kAmid(n)=kASum(k)/m; kBmid(n)=kBSum(k)/m; kCmid(n)=kCSum(k)/m; %Средние

PgAmid(n)=PgASum(k)/m; PgBmid(n)=PgBSum(k)/m; PgCmid(n)=PgCSum(k)/m;

%Средние значения тепловыделений в жилах за прошлые сутки

PeAmid(n)=PeASum(k)/m; PeBmid(n)=PeBSum(k)/m; PeCmid(n)=PeCSum(k)/m;

%Средние значения тепловыделений в экранах за прошлые сутки

<u>%% 6.5.2. РАСЧЁТ ТЕПЛОВЫХ СОПРОТИВЛЕНИЙ ГРУНТА</u>

%Без учёта тау (выбрать)

RtgrA(n)=(TeAmid(n)-T0)/(PgAmid(n)+PeAmid(n))-Rto; %Тепловое сопротивление грутна тепловому потоку от фазы "А"

RtgrB(n)=(TeBmid(n)-T0)/(PgBmid(n)+PeBmid(n))-Rto; %Тепловое сопротивление грутна тепловому потоку от фазы "В"

RtgrC(n)=(TeCmid(n)-T0)/(PgCmid(n)+PeCmid(n))-Rto; %Тепловое сопротивление грутна тепловому потоку от фазы "С"

%С учётом тау (выбрать)

RtgrA(n)=(TeAmid(n)-T0)/((PgAmid(n)+PeAmid(n))*(1-exp(-t/tauA)))-Rto; %Тепловое сопротивление грутна тепловому потоку от фазы "А"

RtgrB(n)=(TeBmid(n)-T0)/((PgBmid(n)+PeBmid(n))*(1-exp(-t/tauB)))-Rto; %Тепловое сопротивление грутна тепловому потоку от фазы "В"

RtgrC(n)=(TeCmid(n)-T0)/((PgCmid(n)+PeCmid(n))*(1-exp(-t/tauC)))-Rto; %Тепловое сопротивление грутна тепловому потоку от фазы "С"

%% 6.5.3. РАСЧЁТ ТЕКУЩИХ ЗНАЧЕНИЙ ДОПУСТИМЫХ ТОКОВ

IgAdop(n)=sqrt((90-

T0)/(kAmid(n)^2*ReAm*(Rto+RtgrA(n))+RgAm*(2*Rti+Rto+RtgrA(n)))); %Допустимый ток в жиле фазы "А"

IgBdop(n)=sqrt((90-

T0)/(kBmid(n)^2*ReBm*(Rto+RtgrB(n))+RgBm*(2*Rti+Rto+RtgrB(n)))); %Допустимый ток в жиле фазы "В"

IgCdop(n) = sqrt((90-

T0)/(kCmid(n)^2*ReCm*(Rto+RtgrC(n))+RgCm*(2*Rti+Rto+RtgrC(n)))); %Допустимый ток в жиле фазы "С"

Igdop(n)=(IgAdop(n)+IgBdop(n)+IgCdop(n))/3; %Среднее значение допустимого тока для трёх фаз

<u>%% 6.5.4. ОБНУЛЕНИЕ СУММАРНЫХ ВЕЛИЧИН НА ТЕКУЩЕМ ШАГЕ к</u>

TeASum(k)=0; TeBSum(k)=0; TeCSum(k)=0; %Сумманрые температуры экранов за

```
прошлые сутки
```

```
kASum(k)=0; kBSum(k)=0; kCSum(k)=0; %Сумманрые коэффициенты токов в экранах PgASum(k)=0; PgBSum(k)=0; PgCSum(k)=0; %Сумманрые тепловыделения в жилах за прошлые сутки
```

```
PeASum(k)=0; PeBSum(k)=0; PeCSum(k)=0; %Сумманрые тепловыделения в экранах за
```

прошлые сутки

end

end

<u>%% 7. ВИЗУАЛИЗАЦИЯ РЕЗУЛЬТАТОВ%</u>

```
% Расчёт погрешностей
DgAComs=pdTA.TAg-TgA1;
DgBComs=pdTB.TBg-TgB1;
DgCComs=pdTC.TCg-TgC1;
% Фаза "А"
figure
hold on
plot(tt./86400,TgA1,'r--')
plot(tt./86400,pdTA.TAg,'r',tt./86400,pdTA.TAe,'b')
grid on
title('Темперарура жилы и экрана фазы "А"')
figure
plot(tt./86400,DgAComs,'r')
grid on
title('Погешость для фазы "А"')
% Фаза "В"
figure
hold on
plot(tt./86400,TgB1,'r--')
plot(tt./86400,pdTB.TBg,'r',tt./86400,pdTB.TBe,'b')
grid on
title('Темперарура жилы и экрана фазы "В"')
```

figure plot(tt./86400,DgBComs,'r') grid on title('Погешость для фазы "В"') % Фаза "С" figure hold on plot(tt./86400,TgC1,'r--') plot(tt./86400,pdTC.TCg,'r',tt./86400,pdTC.TCe,'b') grid on title('Темперарура жилы и экрана фазы "С"') figure plot(tt./86400,DgCComs,'r') grid on title('Погешость для фазы "С"') %% ДОПУСТИМЫЕ ТОКИ figure plot(tt1./86400,RtgrA,'y',tt1./86400,RtgrB,'r',tt1./86400,RtgrC,'b') grid on title('Собственные сопротивления тепловому потоку в грунте') figure plot(tt1./86400,IgAdop,'y',tt1./86400,IgBdop,'r',tt1./86400,IgCdop,'b') grid on title('Допустимые токи фаз') figure plot(tt1./86400,Igdop,'k') grid on title('Средний допустимый ток')

Приложение П

(обязательное)

Математический алгоритм для расчёта температуры резистора в физической модели коаксиального кабеля, написанный в программе MATLAB

<u>%% 1. ВВОД ИСХОДНЫХ ДАННЫХ</u>

Plcer=1985; %Плотность керамического резистора (корундовая керамика), кг/м^3 r1=0.003935; %Наружный радиус резистора, м h1=0.02845; %Высота одного резистора, м h2=0.641; %Высота разистивного делителя, состоящего из 15 резисторов, м r1x=sqrt(r1^2*h1*15/(h2));%Радиус эквивалентного сплошного резистора, м Plger=930; %Плотность герметика, кг/м^3 cger=1600; %Удельная теплоемкость герметика, Дж/(кг*К) lymda ger=0.1611; % Теплопроводность герметика, Вт/(м*К) r2=0.055; %Наружный радиус герметика, м r12=sqrt(r1*r2); % Промежуточный радиус герметика, м Plst=1850; %Плотность стеклотекстолита, кг/м^3 cst=995; %Удельная теплоемкость стеклотекстолита, Дж/(кг*К) lymda_st=0.3; % Теплопроводность стеклотекстолита, Bt/(м*K) r3=0.064; %Наружный радиус стеклотекстолита, м Plrez=1190; %Плотность резины, кг/м^3 crez=972; %Удельная теплоемкость резины, Дж/(кг*К) lymda_rez=0.63; % Теплопроводность резины, Вт/(м*К) alfa_rez=10.311; %Коэффициент теплоотдачи с поверхности резины, Вт/(м2*К) r4=0.076; %Наружный радиус резины, м h=1; %Интервал времени опроса датчиков температуры, сек. Tos=22.35; %Температура окружающей среды, град. Цельсия tk=21194; %Предел по времени, с

%% 2. РАСЧЁТ ПАРАМЕТРОВ МОДЕЛИ

Rger=log(r12/r1)/(2*pi*lymda_ger); %Тепловое сопротивление одного слоя герметика, К*м/Вт

Cger2=cger*Plger*pi*(r2^2-r12^2); %Тепловая ёмкость второго слоя герметика, Дж/(м*К) pw_ger=1/(2*log(r2/r1))-1/((r2/r1)^2-1); %Коэффициент Ван-Вормера для герметика, отн. ед.

Rst=log(r3/r2)/(2*pi*lymda_st); %Тепловое сопротивление стеклотекстолита, К*м/Вт Cst=cst*Plst*pi*(r3^2-r2^2); %Тепловая ёмкость стеклтекстолита, Дж/(м*К) pw_st=1/(2*log(r3/r2))-1/((r3/r2)^2-1); %Коэффициент Ван-Вормера для стеклотекстолита, отн. ед.

Rrez=log(r4/r3)/(2*pi*lymda_rez); %Тепловое сопротивление резины, К*м/Вт

Crez=crez*Plrez*pi*(r4^2-r3^2); %Тепловая ёмкость резины, Дж/(м*К)

pw_rez=1/(2*log(r4/r3))-1/((r4/r3)^2-1); %Коэффициент Ван-Вормера для резины, отн. ед.

Ralfa=1/(alfa_rez*2*pi*r4);%Тепловое сопротивление поверхности резины, К*м/Вт %Теплоёмкости схемы замещения

C2=(1-pw_ger)*Cger1+pw_ger*Cger2; %Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

C3=(1-pw_ger)*Cger2+pw_st*Cst; %Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

C4=(1-pw_st)*Cst+pw_rez*Crez; %Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

C5=(1-pw_rez)*Crez;%Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

%% 3. СЧИТЫВАНИЕ ПАРАМЕТРОВ РЕЖИМА

Q=[0 10.7 12.9 14.88 13.38 11.58]./h2; %Значения тепловыделения

t1=[0 103 3030 6761 17250 17596]; %Время изменения тепловыделения

%% 4. РАСЧЁТ ТЕПЛОВЫДЕЛЕНИЯ И НАЧАЛЬНЫХ УСЛОВИЙ

k=1; tt=0; tt(k)=0; Tcer=0; TsurvGer=0; Tsurf=0; QQ=0; %Обнуление массивов

i=1; %Номер элемента массива Q

Uc1=Tos; %Температура резистора в начальный момент времени

Tsurf(k)=Tos; %Температура на поверхности резинового изолятора

TsurvGer(k)=Tos; %Температура на поверхности герметика

Tcer(k)=Uc1; %Запись с общий массив данных

Uc2=Tos; %Потенциал на второй ёмкости в исходной схеме замещения, К

Uc3=Tos; %Потенциал на третьей ёмкости в исходной схеме замещения, К Uc4=Tos; %Потенциал на четвёртой ёмкости в исходной схеме замещения, К qc1=Q(i); %Начальный тепловой поток (ток в электричестве) в первой ёмкости, Вт/м qc2=0; %Начальный тепловой поток (ток в электричестве) во второй ёмкости, Вт/м qc3=0; %Начальный тепловой поток (ток в электричестве) в третьей ёмкости, Вт/м qc4=0; %Начальный тепловой поток (ток в электричестве) в четвёртой ёмкости, Вт/м %% ЦИКЛ ДЛЯ РАСЧЁТА ПРОФИЛЕЙ ТЕМПЕРАТУРЫ РЕЗИСТОРА В ЗАВИСИМОСТИ ОТ ВРЕМЕНИ

for t=h:h:tk-1

k=k+1; %Счётчик строчного индекса

<u>%% 5. РАСЧЁТ ПРОФИЛЯ ТЕМПЕРАТУРЫ ЖИЛЫ НА ОДНОМ ШАГЕ</u> <u>ИНТЕГРИРОВАНИЯ</u>

%Расчёт параметров дискретной модели тепловой схемы замещения

if t > t1(2)i=2: end if t > t1(3)i=3; end **if** t>t1(4) i=4; end if t > t1(5)i=5; end if t > t1(6)i=6; end QQ(k)=Q(i); %Запись в общий массив значений $ccer = 0.0718 * 4187 * (1 + (5.56 * 10^{-3}) * (Uc1 + 273.15) - (2.61 * 10^{-6}) * (Uc1 + 273.15)^{2});$ %Удельная теплоемкость керамического резистора (корундовая керамика), Дж/(кг*К)

Ccer=ccer*Plcer*pi*r1x^2; %Тепловая ёмкость жилы, Дж/(м*К)

C1=Ccer+pw_ger*Cger1; %Тепловая ёмкость в исходной схеме замещения, Дж/(м*К)

Rc1=h/(2*C1); %Дискретное сопротивление ёмкости C1

Qc1=Uc1/Rc1+qc1; %Величина дискретного источника теплового потока для ёмкости C1 Rc2=h/(2*C2); %Дискретное сопротивление ёмкости C2

Tc2=Uc2+qc2.*Rc2; %Величина дискретного источника температуры для ёмкости С2

Rc3=h/(2*C3); %Дискретное сопротивление ёмкости С3

Tc3=Uc3+qc3.*Rc3; %Величина дискретного источника температуры для ёмкости C3

Rc4=h/(2*C4); %Дискретное сопротивление ёмкости С4

Tc4=Uc4+qc4.*Rc4; %Величина дискретного источника температуры для ёмкости С4

Q1=Qc1+Q(i); %Объединение источников теплового потока

T1=Q1*Rc1; %Эквивалентное преобразование источника теплового потока в источник температуры

%Расчёт модели

A = [1/(Rc1 + Rger) + 1/Rc2 + 1/Rger - 1/Rger 0;

-1/Rger 1/Rger+1/Rc3+1/Rst -1/Rst;

0 -1/Rst 1/Rst+1/Rc4+1/(Rrez+Ralfa)];% Матрица коэффициентов левой части системы уравнений, составленной по методу узловых потенциалов

B=[T1/(Rc1+Rger)+Tc2/Rc2; Tc3/Rc3; Tc4/Rc4+Tos/(Rrez+Ralfa)]; %Матрица

каэффициентов правой части системы уравнений, составленной по методу узловых потенциалов

fi=A\B; %Решение системы уравнений относительно потенциалов

qc1=Q(i)-(T1-fi(1))/(Rc1+Rger);%Тепловой поток на С1 для текущего шага интегрирования, Вт/м

qc2=(fi(1)-Tc2)/Rc2;%Тепловой поток на C2 для текущего шага интегрирования, Вт/м qc3=(fi(2)-Tc3)/Rc3;%Тепловой поток на C3 для текущего шага интегрирования, Вт/м qc4=(fi(3)-Tc4)/Rc4;%Тепловой поток на C2 для текущего шага интегрирования, Вт/м Uc1=fi(1)+((T1-fi(1))*Rger)/(Rc1+Rger);%Потенциал на C1 для текущего шага интегрирования

Uc2=fi(1);%Потенциал на C2 для текущего шага интегрирования

Uc3=fi(2);%Потенциал на C3 для текущего шага интегрирования

Uc4=fi(3);%Потенциал на C4 для текущего шага интегрирования

Tcer(k)=Uc1; %Запись текущего температурного потенциала на резисторе с общий массив данных

tt(k)=t; %Запись текущего времени в массив времени для базы данных и визуализации end

<u>%% 6. ВЫВОД РЕЗУЛЬТАТОВ%</u>

%Экспериментальные значения температуры на поверхности среднего резистора

T8exp = [22.3502080000000;22.3502080000000;22.361130000000;22.3502080000000;

... 77.927085000000;78.105236000000;78.105236000000;78.105236000000;];

T8exp=T8exp';

Delta8=T8exp-Tcer; %Расчёт абсолютной погрешности

figure

plotyy(tt/3600,T8exp,tt/3600,QQ)

title('Температура центрального резистора (расчёт и эксперимент)')

hold on

plot(tt/3600,Tcer)

grid on

figure

plot(tt/3600,Delta8)

grid on

title('Абсолютная погрешность для температуры резистора')

Приложение Р

(обязательное)

Копия акта внедрения результатов НИР «Разработка математического алгоритма для расчёта температурных профилей жил высоковольтных кабельной линии с изоляцией из

сшитого полиэтилена в режиме реального времени»

Общество с ограниченной ответственностью «Димрус»

614000, г. Пермь, ул. Пермская 70, офис 403 тел./факс: (342) 212- 84-74 тел.: (342) 212-91-93 E-mail: <u>dimrus@dimrus.ru</u> <u>http://www.dimrus.ru</u>

АКТ ВНЕДРЕНИЯ

результатов научно-исследовательской работы «Разработка математического алгоритма для расчёта температурных профилей жил высоковольтных кабельных линий с изоляцией из сшитого полиэтилена в режиме реального времени»

Научно-исследовательская работа (НИР) «Разработка математического алгоритма для расчёта температурных профилей жил высоковольтных кабельных линий с изоляцией из сшитого полиэтилена в режиме реального времени» выполнена сотрудниками ФГБОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина» (ИГЭУ) к.т.н., доц. Лебедевым В.Д. (руководитель НИР) и ст. преп. Зайцевым Е.С. (ответственный исполнитель).

Цель НИР заключалась в создании математического алгоритма для расчёта температурных профилей жил однофазных коаксиальных кабелей в высоковольтной кабельной линии (ВКЛ). Разработанный алгоритм позволяет определять температуру жил вдоль однофазных кабелей с необходимым пространственным разрешением в режиме реального времени. Расчёт производится на основе данных о температурных профилях металлических экранов кабелей и токовой нагрузки в жилах, периодически поступающих от средств их измерения.

В основе разработанного алгоритма лежит метод электротепловой аналогии. Тепловая сема замещения однофазного кабеля оптимизирована в целях экономии ресурсов ЭВМ и увеличения быстродействия алгоритма. Расчёт температуры в динамике производится методом неявного интегрирования (методом трапеций).

Разработанный математический алгоритм принят в ООО «Димрус» для внедрения в программное обеспечение комплексной системы мониторинга технического состояния высоковольтных кабелей 110÷500 кВ, создавая возможность контролировать фактическую пропускную способность ВКЛ в режиме реального времени.

Директор ООО "Димрус"

20 апреля 2015 г.

Ботов С.В.

Приложение С

(обязательное)

Копия акта внедрения результатов НИР «Разработка математического алгоритма для оценки пропускной способности высоковольтных кабельных линий с изоляцией из

сшитого полиэтилена»

DIMRUS

Общество с ограниченной ответственностью «Димрус»

614000, г. Пермь, ул. Пермская 70, офис 403 тел./факс: (342) 212- 84-74 тел.: (342) 212-91-93 E-mail: <u>dimrus@dimrus.ru</u> <u>http://www.dimrus.ru</u>

АКТ ВНЕДРЕНИЯ

результатов научно-исследовательской работы «Разработка математического алгоритма для оценки пропускной способности высоковольтных кабельных линий с изоляцией из сшитого полиэтилена в режиме реального времени»

Научно-исследовательская работа (НИР) «Разработка математического алгоритма для оценки пропускной способности высоковольтных кабельных линий с изоляцией из сшитого полиэтилена в режиме реального времени» выполнена сотрудниками ФГБОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина» (ИГЭУ) к.т.н., доц. Лебедевым В.Д. (руководитель НИР) и ст. преп. Зайцевым Е.С. (ответственный исполнитель).

Цель НИР заключалась в создании математического алгоритма для оценки допустимой токовой нагрузки высоковольтных кабельных линий (ВКЛ), состоящих из однофазных коаксиальных кабелей с изоляцией из сшитого полиэтилена. Разработанный алгоритм позволяет определять величины допустимых токов жил однофазных кабелей в режиме реального времени в реальных условиях прокладки. Расчёт производится на основе данных о распределённой вдоль кабельной линии температуре металлических экранов и токовой нагрузки в жилах, периодически поступающих от средств их измерения.

Оценка предельной пропускной способности, определяемой максимальным током кабеля, производится с помощью методики, изложенной в ГОСТ Р МЭК 60287. Кроме того, величина теплового сопротивления грунта является расчетной величиной, и корректируются в процессе работы ВКЛ. Корректировка производится с учётом сравнения прогнозируемых и фактических температур экранов. В основе алгоритма прогнозирования температур лежит метод электротепловой аналогии. Тепловая схема замещения трёхфазной ВКЛ оптимизирована в целях экономии вычислительных ресурсов ЭВМ и увеличения быстродействия алгоритма.

Разработанный математический алгоритм принят в ООО «Димрус» для внедрения в программное обеспечение комплексной системы мониторинга технического состояния высоковольтных кабелей 110÷500 кВ, с целью контроля фактической пропускной способности ВКЛ в режиме реального времени.

Директор ООО "Димрус"

05 мая 2015 г.

Ботов С.В.

Приложение Т

(обязательное)

Копия свидетельства о государственной регистрации программы для ЭВМ «Программа для расчёта температурного профиля жилы однофазного коаксиального силового кабеля с изоляцией из сшитого полиэтилена в режиме реального времени»

Приложение У

(обязательное)

Копия свидетельства о государственной регистрации программы для ЭВМ «Программа для расчёта температуры жил и оценки пропускной способности высоковольтных кабельных линий с изоляцией из сшитого полиэтилена в режиме реального времени»

