УДК 621.316.925

Расчет электрического поля и параметров системы цилиндрических электродов

Слышалов В.К., д-р техн. наук, Слышалов А.В., канд. техн. наук, Кандалов Ю.В., Полкошников Д.А., аспиранты

Предлагается методика определения электрического поля, распределения тока, стекающего с трубопровода в грунт, шагового напряжения и напряжения прикосновения, а также характеристик электрического взаимодействия трубопроводов с протяженными заземлителями и друг с другом.

Ключевые слова: шаговое напряжение, напряжение прикосновения, протяженный заземлитель, электромагнитное поле, импульс тока.

On calculation of electromagnetic field and system constants of cylindrical electrodes

Slyshalov V.K., Doctor of Engineering Science, Slyshalov A.V., Kandalov Y.V., post-graduate student, Polkoshnikov D.A., post-graduate student

The article deals with electromagnetic field calculation techniques, distribution of the current, flowing off the pipe-line into the ground, step and touch voltage as well as the characteristics of electrical interaction of the pipe-lines with extended earthing devices and with each other.

Keywords: step voltage, touch voltage, extended earthing device, electromagnetic field, current impulse.

В работе [1] было рассмотрено электромагнитное поле протяженного цилиндрического заземлителя, проложенного параллельно границе раздела воздух-грунт при условии $h > r_3$, где h – глубина прокладки заземлителя, r_3 – его радиус (рис. 1).

Целью выполненного исследования являлось нахождение волновых параметров заземлителя. Основной интерес представляли изменения электромагнитного поля вдоль заземлителя, характеризующие процесс прохождения импульсов тока и напряжения, их затухание по мере продвижения, вынос зарядов и потенциалов в пожаро- и взрывоопасные зоны и т.д. Основное упрощающее допущение, использованное в этих расчетах, предполагало, в силу неравенств $h >> r_3$, независимость векторов поля на поверхности заземлителя от угла θ (рис. 1). Необходимость учета изменений по

Рис. 1. Геометрические характеристики системы: заземлитель, граница раздела сред

θ' значения плотности тока делает задачу расчета волнового поля заземлителя чрезмерно громоздкой.

Вместе с тем можно предположить, что при выполнении условия

$$h \ll \lambda_{3} = 2\pi \sqrt{\frac{2}{\varpi \mu_{a} \gamma}}, \qquad (1)$$

где λ_3 – длина волны электромагнитного поля заземлителя в грунте; γ – проводимость грунта; ω – угловая частота; $\mu_a = \mu_0 \cdot \mu$ – абсолютная магнитная проницаемость.

Рис. 2. Координатная система и геометрические характеристики заземлителя и трубопровода

Поперечное электрическое поле заземлителя в схеме рис. 1 допустимо определять через стационарное поле тока проводимости, стекающего с заземлителя. Аналогичным образом допустимо использовать этот метод и

при оценке величин токов, перетекающих с заземлителей на трубопроводы, оболочки кабелей и другие протяженные объекты (рис. 2).

Поскольку задача расчета поля тока в схеме рис. 1 с помощью метода изображений преобразуется к задаче рис. 2, рассмотрим решение именно этой задачи.

Распределения векторов тока в грунте $\vec{\delta}(r,\theta)$ и напряженности электрического поля $\vec{E}(r,\theta) = \vec{\delta}(r,\theta)$ определяем, полагая, что удельное сопротивление материала электродов $\gamma_{,3} \rightarrow \infty$, т.е. вектора плотности токов на электродах $\vec{\delta}_1(r_1\theta')$, $\vec{\delta}_2(r_2\theta'')$ имеют только нормальные составляющие и являются аналогами плотностей свободных зарядов в соответствующей задаче электростатики [2]. При решении этой задачи принимаем, что плотности зарядов на цилиндрах 1 и 2 распределены по следующим законам:

$$\sigma_1(\theta') = \sigma_{01} + \sum_{k=1}^{\infty} A_{k1} \cos k\theta' + B_{k1} \sin k\theta'; \qquad (2)$$

$$\sigma_{21}(\theta'') = \sigma_{02} + \sum_{n=1}^{\infty} A_{n2} \cos n\theta'' + B_{n2} \sin n\theta'', \qquad (3)$$

где $\sigma_{0i} = \frac{\tau_{0i}}{2\pi r}$ (*i* = 1, 2); линейную плотность зарядов на цилиндрах τ_{0i} считаем заданной; $d\tau_2 = \sigma_2(\theta'')r_2d\theta'' - элементарный линейный$ заряд второго электрода.

Интегрируем на первом электроде распределение [2]

$$d\sigma_{1}(\theta') = -\frac{\sigma_{2}(\theta'')r_{2}d\theta''}{\pi r_{1}} \times \sum_{k=1}^{\infty} \left(\frac{r_{1}}{r}\right)^{k} \left(\cos k\theta \cos k\theta' + \sin k\theta \sin k\theta'\right)$$

Последовательно полагаем, что $\sigma_2(\theta'') = \sigma^0$, $\cos n\theta''$, $\sin n\theta''$ (n = 1, 2, ...), и интегрируем по θ'' от 0 до 2π . В итоге для $\sigma_1(\theta')$ получаем коэффициенты A_{k1} , B_{k1} в ряде (2) в следующем виде [3]:

$$A_{k1} = a_{k0}\sigma_{02} + \sum_{n=1}^{\infty} a_{kn}A_{n2} + b_{kn}B_{n2},$$

$$B_{k1} = b_{k0}\sigma_{02} + \sum_{n=1}^{\infty} b_{kn}A_{n2} - a_{kn}B_{n2},$$
(4)

где

$$a_{k0} = -2\frac{r_2}{r_1} \left(\frac{r_1}{r_0}\right)^k \cos k\theta_0, \quad b_{k0} = -2\frac{r_2}{r_1} \left(\frac{r_1}{r_0}\right)^k \sin k\theta_0, \\a_{kn} = (-1)^{n+1} \frac{r_2}{r_1} \left(\frac{r_1}{r_0}\right)^k \frac{(k+n-1)!}{n!(k-1)!} \cos(n+k)\theta_0, \\b_{kn} = (-1)^{n+1} \frac{r_2}{r_1} \left(\frac{r_1}{r_0}\right)^k \frac{(k+n-1)!}{n!(k-1)!} \sin(n+k)\theta_0.$$
(5)

Для распределения $\sigma_2(\theta'')$ в форме ряда (3) коэффициенты A_{n2} , B_{n2} находим тем же методом:

$$A_{n2} = a_{n0}\sigma_{01} + \sum_{k=1}^{\infty} a_{nk}A_{k1} + b_{nk}B_{k1},$$

$$B_{n2} = b_{n0}\sigma_{01} + \sum_{k=1}^{\infty} b_{nk}A_{k1} - a_{nk}B_{k1},$$
(6)

причем a_{n0} , b_{n0} , a_{nk} , b_{nk} получаются по формулам путем замены $r_1 \leftrightarrow r_2$, $n \leftrightarrow k$.

Совместное решение бесконечных систем алгебраических уравнений (5), (6) относительно коэффициентов A_{ki} , B_{ki} , A_{ni} , B_{ni} (k, n, i = 1, 2, ...) целесообразно проводить методом редукции [3], осуществляя последнюю отдельно для индексов k и n. Полученные значения коэффициентов A_{ki} , A_{ni} будут соответствовать разложению распределений зарядов на цилиндрах по мультиполям порядка k, n.

Рис. 3. Координаты расчетных точек в поле заземлителя

Расчет составляющих напряженности E_x , E_y осуществляется путем суммирования полей, создаваемых отдельными частными распределениями. От цилиндра 1, например, в точке с координатами *x*, *y* (рис. 3), согласно [2], получаем:

• от распределения
$$\sigma_{01} = 1$$

 $E_{X0} = \frac{\cos\theta}{\varepsilon_a \rho^*}, \quad E_{y0} = \frac{\sin\theta}{\varepsilon_a \rho^*}, \quad \rho^* = \frac{\rho}{r_1};$
(7)

• от распределения $\cos k\theta'$

$$\mathsf{E}_{Xk}^{c} = \frac{\cos(k+1)\theta}{2\varepsilon_{a}\rho^{*}k+1}, \quad \mathsf{E}_{yk}^{c} = \frac{\sin(k+1)\theta}{2\varepsilon_{a}\rho^{*}k+1}; \tag{8}$$

• от распределения $sink\theta'$

$$E_{Xk}^{s} = \frac{\sin(k+1)\theta}{2\varepsilon_{a}\rho^{*}k+1}, \quad E_{yk}^{sc} = -\frac{\cos(k+1)\theta}{2\varepsilon_{a}\rho^{*}k+1}.$$
 (9)

В качестве иллюстраций применения предлагаемой методики рассмотрим две задачи.

Задача 1. Для трубопровода (рис. 1), проложенного в грунте вблизи плоской границы раздела с воздухом (γ₂ → 0), определим распределение плотности тока, стекающего с трубопровода в грунт, напряжение прикосно-

вения *U*_{пр} и шаговое напряжение *U*_ш(*x*), полагая стекающий ток равным *i*₀ А/м.

Задача 2. Для заглубленного трубопровода *h* >> *r*_T, проложенного параллельно цилиндрическому заземлителю, с которого стекает ток *i*₀ A/м, определим величины катодной и анодной поверхностей трубопровода в поле заземлителя.

Решение задачи 1. Вводим электродизображение (рис. 1) и рассматриваем в однородной среде с удельной проводимостью γ_1 поле двух цилиндров с параметрами $r_1 = r_2 = r_3$, $r_0 = 2h$, $\theta_0 = \frac{\pi}{2}$, $i_{01} = i_{02} = i_0$.

Распределение плотности тока на поверхности электрода дает формула (2), в которой следует заменить $\sigma_1(\theta')$ на $\delta_1(\theta')$ и σ_{01} на

 $\delta_{01} = \frac{i_0}{2\pi r_3}$. Количество слагаемых в (2) при заданной точности расчета определяет величина отношения $\frac{r_3}{2h}$ в выражениях (5), причем ряд (2) остается сходящимся и при *h* = *r*₃.

Поскольку для вычисления распределения $\delta_1(\theta')$ необходимо найти лишь коэффициенты A_{k1} , B_{k1} , k = 1, 2, ..., подставляем в выражения (4) формулы (6) для A_{n2} , B_{n2} и в итоге получаем бесконечную систему уравнений:

$$A_{k1} = a_{k0}\delta_{02} + \sum_{n=1}^{\infty} \left\{ a_{kn} \left(a_{n0}\delta_{01} + \sum_{k=1}^{\infty} (a_{nk}A_{k1} + b_{nk}B_{k1}) \right) + b_{kn} \left(b_{n0}\delta_{01} + \sum_{k=1}^{\infty} (b_{nk}A_{k1} - a_{nk}B_{k1}) \right) \right\},$$

$$B_{k1} = b_{k0}\delta_{02} + \sum_{n=1}^{\infty} \left\{ b_{kn} \left(a_{n0}\delta_{01} + \sum_{k=1}^{\infty} (a_{nk}A_{k1} + b_{nk}B_{k1}) \right) - a_{kn} \left(b_{n0}\delta_{01} + \sum_{k=1}^{\infty} (b_{nk}A_{k1} - a_{nk}B_{k1}) \right) \right\},$$
(10)

k, n = 1, 2, ...Коэффициенты $a_{k0}, a_{kn}, ...$ в уравнениях вычисляются по формулам (5): $\delta_{01} = \delta_{02} = \frac{i_0}{2\pi r_2}$.

Напряжение прикосновения в этой задаче $U_{np} = U_{ab}$ (рис. 1) дает интеграл $U_{np} = \int_{r_3}^{h} E_y \left(\frac{\pi}{2} y H_y\right),$ (11)

где $E_y\left(\frac{\pi}{2}yH_y\right)$ находится в согласии с формулами (8) и (9), в которых выполняется замена $\varepsilon_a \rightarrow \gamma_1, \ \rho^* = \frac{y}{r_3}, \ \sigma_{0i} \rightarrow \delta_{0i} \dots$ Напряжение шага дает интеграл

$$U_{uu}(x) = 2 \int_{x}^{x+a_{uu}} E_{x1}(\zeta y = h) d\zeta.$$
(12)

При расчете напряжения прикосновения в формулах (7)–(9) подставляем $\rho_1 = y$, $\theta_1 = \frac{\pi}{2}$, $\rho_2 = 2h - y$, $\theta_2 = \frac{3\pi}{2}$. Главную часть решения дает постоянная составляющая плотности тока $\delta_0 = \frac{i_0}{2\pi r_3}$, для которой по формулам

(7) получаем

$$E_{y01} = \frac{i_0}{2\pi\gamma_1 y}; \quad E_{y02} = -\frac{i_0}{2\pi\gamma(2h-y)}$$

и, соответственно,

$$U_{np0} = \frac{i_0}{2\pi\gamma_1} \ln \frac{h^2}{(2h - r_3)r_3}.$$
 (13)

Дополняющие «добавки» от гармонических составляющих напряжений

$$E_{yk1}^{c} = \frac{A_{k1}r_{3}^{k+1}}{2\gamma_{1}y^{k+1}}\sin(k+1)\frac{\pi}{2},$$

$$E_{yk2}^{c} = \frac{A_{k2}r_{3}^{k+1}}{2\gamma_{1}(2h-y)^{k+1}}\sin(k+1)\frac{3\pi}{2};$$

$$E_{yk1}^{s} = -\frac{B_{k1}r_{3}^{k+1}}{2\gamma_{1}y^{k+1}}\cos(k+1)\frac{\pi}{2},$$

$$E_{yk2}^{s} = -\frac{B_{k2}r_{3}^{k+1}}{2\gamma_{1}(2h-y)^{k+1}}\cos(k+1)\frac{3\pi}{2}$$

имеют вид

$$U_{np}^{c} = \int_{r_{3}}^{h} \left(E_{yk1}^{c} + E_{yk2}^{c} \right) dy = \frac{A_{k1}r_{3}^{k+1}}{2\gamma_{1}k} \left\{ \left(\frac{1}{r_{3}^{k}} - \frac{1}{h^{k}} \right) \times \left(\frac{1}{r_{3}^{k}} - \frac{1}{h^{k}} \right) \right\} \right\}$$
(14)
$$\times \sin\left(k + 1 \right) \frac{\pi}{2} + \left(\frac{1}{h^{k}} - \frac{1}{(2h - r_{3})^{k}} \right) \sin\left(k + 1 \right) \frac{3\pi}{2} \right\},$$
(14)
$$U_{np}^{s} = \int_{r_{3}}^{h} \left(E_{yk1}^{s} + E_{yk2}^{s} \right) dy = -\frac{B_{k1}r_{3}^{k+1}}{2\gamma_{1}k} \left\{ \left(\frac{1}{r_{3}^{k}} - \frac{1}{h^{k}} \right) \times \left(\frac{1}{2h} - \frac{1}{2h - r_{3}} \right)^{k} \right\}$$
(15)
$$\times \cos\left(k + 1 \right) \frac{\pi}{2} - \left(\frac{1}{h^{k}} - \frac{1}{(2h - r_{3})^{k}} \right) \cos\left(k + 1 \right) \frac{3\pi}{2} \right\}.$$

Суммарное напряжение определяется по формуле

$$U_{np} = U_{np0} + U_{np}^{s} + U_{np}^{c} \,. \tag{16}$$

При определении напряжения шага учитываем, что на поверхности грунта $\rho_1 = \rho_2 = (h^2 + x^2)^{\frac{1}{2}}, \qquad \theta_1 = \arcsin \frac{h}{(h^2 + x^2)^{\frac{1}{2}}},$

 $\cos\theta_1 = \cos\theta_2 = \frac{x}{\rho_1} \, .$

Для постоянной составляющей тока δ_0 , согласно (12), получаем главную часть U_w (x):

$$U_{\omega 0} = 2 \cdot \int_{x}^{x+a_{\omega}} E_{x10}(\zeta) d\zeta = \frac{i_0}{2\pi\gamma} \ln \frac{h^2 + (x+a_{\omega})^2}{h^2 + x^2}.$$
 (17)

От гармонических составляющих напряженностей

$$E_{xk} = 2E_{xk1} = \sum_{k=1}^{\infty} \frac{r_3^{k+1}}{\gamma (h^2 + x^2)^{\frac{k+1}{2}}} \begin{bmatrix} A_k \cos(k+1)\theta + \\ +B_k \sin(k+1)\theta \end{bmatrix}$$
(18)

получаем

$$U_{uu}^{c}(x) + U_{uu}^{s}(x) =$$

$$= \frac{1}{\gamma} \sum_{k=1}^{\infty} r_{3}^{k+1} \int_{x}^{x+a_{uu}} \left\{ A_{k1} \cos \left[(k+1) \arcsin \frac{h}{(h^{2} + \zeta^{2})^{\frac{1}{2}}} \right] + B_{k1} \sin \left[(k+1) \arg \frac{h}{(h^{2} + \zeta^{2})^{\frac{1}{2}}} \right] \right\} \frac{d\zeta}{(h^{2} + \zeta^{2})^{\frac{k+1}{2}}}.$$
(19)

Изложенная методика расчета распределений $\delta_1(\theta')$, $U_{\omega}(x)$ и напряжения U_{np} применима и в общем случае, когда удельные проводимости сред γ_1 и γ_2 (рис. 1) имеют конечные и различные значения, например, вода и грунт. Учет этого различия сведется к применению метода изображений для определения фиктивных токов и раздельному рассмотрению электрических полей в средах γ_1 и γ_2 .

Решение задачи 2. Геометрические характеристики трубопровода и заземлителя показаны на рис. 2: для трубопровода – $r_T = r_1$, $x_T = y_T = 0$, $\delta_{01} = 0$; для заземлителя – $x_3 = r_0 \cos v_0$, $x_3 = r_0 \cos \theta_0$, $y_3 = r_0 \sin \theta_0$, $\delta_{02} = \frac{i_0}{2\pi r_2}$; внешнее

положение описывают параметры r₀, θ₀.

Распределение тока на поверхности трубопровода, согласно ряду (2) и условию δ_{01} = 0, имеет вид

$$\delta_1(r_1, \mathbf{v}') = \sum_{k=1}^{\infty} A_{k1} \cos k\theta' + B_{k1} \sin k\theta'.$$
⁽²⁰⁾

Коэффициенты A_{k1} , B_{k1} определяются при решении системы уравнений (10), в которых следует принять $\delta_{01} = 0$:

$$A_{k1} = a_{k0}\delta_{02} + \sum_{n=1}^{\infty}\sum_{k=1}^{\infty} (a_{kn}a_{nk} + b_{kn}b_{nk})A_{k1} + (a_{kn}b_{nk} - b_{kn}a_{nk})B_{k1},$$

$$B_{k1} = b_{k0}\delta_{02} + \sum_{n=1}^{\infty}\sum_{k=1}^{\infty} (b_{kn}a_{nk} - a_{kn}b_{nk})A_{k1} + (b_{kn}b_{nk} + a_{kn}a_{nk})B_{k1}.$$

В частности, положив $\theta_0 = 0$, что всегда можно сделать в системе координат рис. 2, и приняв $r_2 \ll r_0$, получаем

$$\begin{aligned} A_{k1} &\cong a_{k0} \delta_{02} = -2 \frac{r_2}{r_1} \left(\frac{r_1}{r_0} \right)^k \delta_{02} = -\frac{r_2}{r_1} \left(\frac{r_1}{r_0} \right)^k \frac{i}{\pi r_2}, \\ B_{k1} &= 0, \end{aligned}$$

и соответственно, распределение тока на поверхности трубопровода в виде

$$\delta_1(r_1\theta') = -\frac{i_0}{\pi r_1} \sum_{k=1}^{\infty} \left(\frac{r_1}{r_0}\right)^k \cos k\theta'.$$

При *r*₁ << *r*₀ это выражение преобразуется в распределение тока по цилиндру в равномерном поле:

$$\delta_1(r_1\theta') = -\frac{l_0}{\pi r_0} \cos k\theta' = -2\delta_{02}(r_0) \cos k\theta'.$$

Границы катодной (δ₁ < 0) и анодной (δ₁ > 0) областей на поверхности трубопровода, характеризующие процессы коррозионного воздействия заземлителя на трубопровод, можем получить решением уравнения

$$\delta_1(r_1,\theta_1) = 0.$$
 (21)

Заключение

Предложенный метод расчета плоскопараллельных полей взаимодействующих цилиндрических заземлителей допускает распространение на регулярные системы электродов при любом количестве последних.

Возможности метода существенно расширяются при его совместном использовании с методом изображений, в том числе, при решении задач электростатики, в которых исследуются поля цилиндрических электродов, расположенных вблизи границы раздела диэлектрических сред.

Перспективной областью применения метода является задача об электрическом поле и параметрах трехфазной системы одножильных силовых кабелей с изоляцией из сшитого полиэтилена, для которых характерно использование экранов в качестве токоведущих элементов, причем распределение токов в экранах существенно зависит от расположения кабелей относительно друг друга и границы воздух-грунт.

Список литературы

1. Слышалов В.К., Киселева Ю.А. Электронное поле протяженного заземлителя, проложенного параллельно границе раздела воздух-грунт // Вестник ИГЭУ. – 2005. – Вып. 1. – С. 62–69.

2. Гринберг Г.А., Бонштедт Б.Э. Основа точной теории волнового поля линии передачи // Ж.ТФ. – 1954. – Т. XXIV. – Вып. 1. – С. 62–69.

3. Слышалов В.К. Некоторые специальные распределения зарядов в плоскопараллельных электростатических полях // Новые методы исследования в теоретических электротехнике и инженерной электрофизике: Межвуз. сб. науч. тр. / Иван. гос. ун-т. – Иваново, 1975.

4. Слышалов В.К. Распределение электрических зарядов на ленте из несовершенного диэлектрика, движущейся вблизи кругового цилиндра // Электричество. – 1978. – № 2. – С. 68–74.

5. Канторович Л.В., Крылов В.И. Приближенные методы высшего анализа. – Л-М.: ГИТТЛ, 1949.

6. Методы расчета электростатических полей / Н.Н. Миромабав, В.М. Костенко, М.Л. Левинштейн, Н.Н. Тихадеев. – М.: Высш. шк., 1963.

Слышалов Владимир Константинович, Ивановский государственный энергетический университет, доктор технических наук, профессор кафедры электрических систем, телефон (4932) 38-57-79, адрес: 153003, г. Иваново, ул. Красных Зорь, д.10, кв.43.

Слышалов Андрей Владимирович, ОАО «Ивэнерго», начальник отдела, кандидат технических наук, телефон 8-910-982-79-91, адрес: 153003, г. Иваново, ул. Красных Зорь, д.10, кв.43.

Кандалов Юрий Владимирович, Ивановский государственный энергетический университет, аспирант кафедры электрических систем, телефон (4932) 34-99-25, 153000, г. Иваново, ул. Красногвардейская д.5, кв.20, e-mail: kandalov@ivrdu.so-cdu.ru artyr_198353@mail.ru

Полкошников Денис Андреевич, Ивановский государственный энергетический университет, аспирант кафедры электрических систем, телефон (4932) 38-57-79, адрес: 153000, г. Иваново, ул. Красногвардейская д.5, кв.20 e-mail: DenisPolkoshnikov@yandex.ru